Delay Colourings of Cubic Graphs

Type: Article

Publication Date: 2013-09-20

Citations: 2

DOI: https://doi.org/10.37236/2920

Abstract

In this note we prove the conjecture of Wilfong, Haxell and Winkler (2001) that every bipartite multi-graph with integer edge delays admits an edge colouring with $d+1$ colours in the special case when $d = 3$.

Locations

  • The Electronic Journal of Combinatorics - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Delay colourings of cubic graphs 2012 Agelos Georgakopoulos
+ Delay colourings of cubic graphs 2012 Agelos Georgakopoulos
+ Edge Colouring with Delays 2006 Noga Alon
Vera Asodi
+ Note on edge-colored graphs and digraphs without properly colored cycles 2007 Gregory Gutin
+ Note on edge-colored graphs and digraphs without properly colored cycles 2007 Gregory Gutin
+ Colouring Non-Even Digraphs 2019 Marcelo Garlet Millani
Raphael Steiner
Sebastian Wiederrecht
+ Colouring Non-Even Digraphs 2019 Marcelo Garlet Millani
Raphael Steiner
Sebastian Wiederrecht
+ Monochromatic-degree conditions for properly colored cycles in edge-colored complete graphs 2022 Xiaozheng Chen
Xueliang Li
+ PDF Chat Colouring Non-Even Digraphs 2022 Marcelo Garlet Millani
Raphael Steiner
Sebastian Wiederrecht
+ On Polynomial Representations of the DP Color Function: Theta Graphs and Their Generalizations 2020 Charlie Halberg
Hemanshu Kaul
Andy Liu
Jeffrey A. Mudrock
Paul Shin
Seth Thomason
+ On Polynomial Representations of the DP Color Function: Theta Graphs and Their Generalizations 2020 Charlie Halberg
Hemanshu Kaul
Andy Liu
Jeffrey A. Mudrock
Paul Shin
Seth Thomason
+ PDF Chat Distance colouring without one cycle length 2017 Ross J. Kang
François Pirot
+ A Note on Fractional DP-Coloring of Graphs 2019 Hemanshu Kaul
Jeffrey A. Mudrock
+ PDF Chat Distance Colouring Without One Cycle Length 2018 Ross J. Kang
François Pirot
+ Vizing's and Shannon's Theorems for defective edge colouring 2022 P Aboulker
Guillaume Aubian
Chien‐Chung Huang
+ Degree Conditions for the Existence of Vertex-Disjoint Cycles and Paths: A Survey 2018 Shuya Chiba
Tomoki Yamashita
+ On measures of edge-uncolorability of cubic graphs: A brief survey and some new results 2017 M. A. Fiol
Giuseppe Mazzuoccolo
Eckhard Steffen
+ PDF Chat Measures of Edge-Uncolorability of Cubic Graphs 2018 M.A. Fiol
Giuseppe Mazzuoccolo
Eckhard Steffen
+ Properly Coloured Cycles and Paths: Results and Open Problems 2008 Gregory Gutin
Eun‐Jung Kim
+ Proof of the Goldberg-Seymour Conjecture on Edge-Colorings of Multigraphs 2019 Guantao Chen
Guangming Jing
Wenan Zang

Works That Cite This (1)

Action Title Year Authors
+ PDF Chat Transversals in Latin Squares 2024 Richard Montgomery