Local energy decay and smoothing effect for the damped Schrödinger equation

Type: Article

Publication Date: 2017-07-14

Citations: 6

DOI: https://doi.org/10.2140/apde.2017.10.1285

Abstract

We prove the local energy decay and the smoothing effect for the damped Schr{\"o}dinger equation on R^d. The self-adjoint part is a Laplacian associated to a long-range perturbation of the flat metric. The proofs are based on uniform resolvent estimates obtained by the dissipative Mourre method. All the results depend on the strength of the dissipation which we consider.

Locations

  • Analysis & PDE - View
  • arXiv (Cornell University) - View - PDF
  • Project Euclid (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat LOCAL DECAY FOR THE DAMPED WAVE EQUATION IN THE ENERGY SPACE 2016 Julien Royer
+ Local energy decay for the damped wave equation 2014 Jean‐Marc Bouclet
Julien Royer
+ Low frequency asymptotics and local energy decay for the Schrödinger equation 2024 Julien Royer
+ Low frequency asymptotics and local energy decay for the Schr{ö}dinger equation 2021 Julien Royer
+ PDF Chat Cutoff resolvent estimates and the semilinear Schrödinger equation 2008 Hans Christianson
+ Cutoff Resolvent Estimates and the Semilinear Schrödinger Equation 2007 Hans Christianson
+ Long-time decay estimates for the Schr\"odinger equation on manifolds 2004 Igor Rodnianski
Terence Tao
+ Long-time decay estimates for the Schrödinger equation on manifolds 2004 Igor Rodnianski
Terence Tao
+ On the Decay in the Energy Space of Solutions to the Damped Magnetic Radial Schrödinger Equation with Non-Local Nonlinearities 2024 Taim Saker
Mirko Tarulli
George Venkov
+ Local energy decay for several evolution equations on asymptotically euclidean manifolds 2010 Jean‐François Bony
Dietrich Häfner
+ PDF Chat Local energy decay for several evolution equations on asymptotically euclidean manifolds 2010 Jean Francois Bony
Dietrich Häfner
+ PDF Chat Well-posedness and local smoothing of solutions of Schrödinger equations 2005 Alexandru D. Ionescu
Carlos E. Kenig
+ PDF Chat Stabilization of Schrödinger equation in exterior domains 2007 Lassaad Aloui
Moez Khenissi
+ Low frequency estimates and local energy decay for asymptotically euclidean Laplacians 2010 Jean‐Marc Bouclet
+ Weak Dispersive estimates for Schrödinger equations with long range potentials 2008 J. A. Bercelo
Alberto Ruiz
Luis Vega
Mari Cruz Vilela
+ Finite time extinction for the strongly damped nonlinear Schrödinger equation in bounded domains 2019 Pascal Bégout
Jesús Ildefonso Díaz Díaz
+ PDF Chat A remark on the logarithmic decay of the damped wave and Schr\"odinger equations on a compact Riemannian manifold 2023 Iván Moyano
Nicolas Burq
+ A remark on the logarithmic decay of the damped wave and Schrödinger equations on a compact Riemannian manifold 2023 Nicolas Burq
Iván Moyano
+ Local Decay Estimates 2022 Avy Soffer
Xiaoxu Wu
+ A local smoothing estimate for the Schrödinger equation 2008 Keith M. Rogers