The Cohen-Macaulayness of the Rees algebras of local rings

Type: Article

Publication Date: 1983-03-01

Citations: 13

DOI: https://doi.org/10.1017/s0027763000020237

Abstract

Let (A, m, k) be a Noetherian local ring. We define and call it the Rees algebra of A . Let X be an indeterminate over A , then R ( A ) can be identified with the A -subalgebra .

Locations

  • Nagoya Mathematical Journal - View - PDF
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On the Gorensteinness of Rees algebras over local rings 1986 Shin Ikeda
+ Rees Modules and Reduction of an Ideal Relative to a Noetherian Module 2011 Naser Zamani
+ PDF Chat Coefficient ideals and the Cohen-Macaulay property of Rees algebras 2000 Eero Hyry
+ The Rees Algebra of a Module and Ideal Module over Noetherian Local Ring 2012 Priti Singh
Shiv Datt Kumar
+ On arithmetic macaulayfication of certain local rings 1998 Takesi Kawasaki
+ LOCALLY COMPLETE INTERSECTION IDEALS IN COHEN-MACAULAY LOCAL RINGS 1994 Mee-Kyoung Kim
+ Quasi-Gorensteinness of extended Rees algebras 2013 Youngsu Kim
+ A note on the cohen-macaulayness of multi-rees rings 1999 Zhongming Tang
+ PDF Chat Quasi-Gorensteinness of extended Rees algebras 2017 Youngsu Kim
+ On the Cohen-Macaulayness and defining ideal of Rees algebras of modules 2018 Alessandra Costantini
+ On the Cohen-Macaulay property of the Rees algebra of the module of differentials 2020 Alessandra Costantini
Tan Dang
+ PDF Chat Remarks on lifting of Cohen-Macaulay property 1983 Manfred Herrmann
Shin Ikeda
+ On Cohen-Macaulay and Gorenstein properties of Rees algebras 1994 幸男 中村
+ PDF Chat Cohen–Macaulayness of Rees Algebras of Modules 2016 Kuei-Nuan Lin
+ PDF Chat Rees algebras of ideals having small analytic deviation 1993 Sam Huckaba
Craig Huneke
+ On the Gorensteinness of Rees algebras over local rings 1985 信 池田
+ Rees algebra over an ideal in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="fraktur">t</mml:mi></mml:math>-rings 2014 Jyoti Singh
Shiv Datt Kumar
+ Results on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module 2018 Mohadeseh Tohidi
Амир Мафи
Kamal Ahmadi
+ PDF Chat Reduction Numbers and Rees Algebras of Powers of an Ideal 1993 Lê Tuâń Hoa
+ On arithmetic Macaulayfication of Noetherian rings 2001 Takesi Kawasaki