Second order freeness and fluctuations of random matrices. III: Higher order freeness and free cumulants

Type: Article

Publication Date: 2007-01-01

Citations: 53

DOI: https://doi.org/10.4171/dm/220

Abstract

We extend the relation between random matrices and free probability theory from the level of expectations to the level of all correlation functions (which are classical cumulants of traces of products of the matrices). We introduce the notion of “higher order freeness” and develop a theory of corresponding free cumulants. We show that two independent random matrix ensembles are free of arbitrary order if one of them is unitarily invariant. We prove \mathrm{R} -transform formulas for second order freeness. Much of the presented theory relies on a detailed study of the properties of “partitioned permutations”.

Locations

  • Documenta Mathematica - View - PDF

Similar Works

Action Title Year Authors
+ Second Order Freeness and Fluctuations of Random Matrices, III. Higher order freeness and free cumulants 2006 Benoı̂t Collins
James A. Mingo
Piotr Śniady
Roland Speicher
+ Second Order Freeness and Fluctuations of Random Matrices: I. Gaussian and Wishart matrices and Cyclic Fock spaces 2004 James A. Mingo
Roland Speicher
+ Second Order Freeness and Fluctuations of Random Matrices: I. Gaussian and Wishart matrices and Cyclic Fock spaces 2004 James A. Mingo
Roland Speicher
+ Second order freeness and fluctuations of random matrices: I. Gaussian and Wishart matrices and cyclic Fock spaces 2005 James A. Mingo
Roland Speicher
+ Second order freeness and fluctuations of random matrices: II. Unitary random matrices 2006 James A. Mingo
Piotr Śniady
Roland Speicher
+ Second Order Cumulants: second order even elements and R-diagonal elements 2019 Octavio Arizmendi
James A. Mingo
+ Partial freeness of random matrices 2012 Jiahao Chen
Troy Van Voorhis
Alan Edelman
+ Second order cumulants: Second order even elements and $R$-diagonal elements 2023 Octavio Arizmendi
James A. Mingo
+ Asymptotic cyclic-conditional freeness of random matrices 2022 Guillaume Cébron
Nicolas Gilliers
+ PDF Chat Infinitesimal freeness and deformed matrix models 2010 Maxime Février
+ Random Matrices and Non-Commutative Probability 2021 Arup Bose
+ Functional relations for higher-order free cumulants 2021 Gaëtan Borot
Séverin Charbonnier
Elba Garcia‐Failde
Felix Leid
Sergey Shadrin
+ From higher order free cumulants to non-separable hypermaps 2022 Luca Lionni
+ Asymptotic Freeness for Gaussian, Wigner, and Unitary Random Matrices 2017 James A. Mingo
Roland Speicher
+ Free probability theory 2015 Roland Speicher
+ PDF Chat Random matrices and free probability theory 2011 Florent Benaych-Georges
+ PDF Chat Asymptotic cyclic-conditional freeness of random matrices 2023 Guillaume Cébron
Nicolas Gilliers
+ Combinatorics of Free Cumulants 2000 Bernadette Krawczyk
Roland Speicher
+ Combinatorics of free cumulants 1999 Bernadette Krawczyk
Roland Speicher
+ Combinatorial theory of permutation-invariant random matrices II: cumulants, freeness and Levy processes 2015 Franck Gabriel