Global dominated splittings and the $C^1$ Newhouse phenomenon

Type: Article

Publication Date: 2006-03-14

Citations: 18

DOI: https://doi.org/10.1090/s0002-9939-06-08445-0

Abstract

We prove that given a compact $n$-dimensional boundaryless manifold $M$, $n \geq 2$, there exists a residual subset $\mathcal {R}$ of the space of $C^1$ diffeomorphisms $\mathrm {Diff}^1(M)$ such that given any chain-transitive set $K$ of $f \in \mathcal {R}$, then either $K$ admits a dominated splitting or else $K$ is contained in the closure of an infinite number of periodic sinks/sources. This result generalizes the generic dichotomy for homoclinic classes given by Bonatti, Diaz, and Pujals (2003). It follows from the above result that given a $C^1$-generic diffeomorphism $f$, then either the nonwandering set $\Omega (f)$ may be decomposed into a finite number of pairwise disjoint compact sets each of which admits a dominated splitting, or else $f$ exhibits infinitely many periodic sinks/sources (the "$C^1$ Newhouse phenomenon"). This result answers a question of Bonatti, Diaz, and Pujals and generalizes the generic dichotomy for surface diffeomorphisms given by Mañé (1982).

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A C<sup>1</sup>-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources 2003 Christian Bonatti
Lorenzo J. Díaz
Enrique Pujals
+ A C^1 -Generic dichotomy for diffeomorphisms 2006 Christian Bonatti
Lorenzo J. Díaz
Enrique Pujals
+ Symbolic Extensions and dominated splittings for Generic C^1-Diffeomorphisms 2012 Alexander Arbieto
Alma Armijo
Thiago Catalan
Laura Senos
+ PDF Chat On the dynamics of dominated splitting 2009 Enrique Pujals
Martı́n Sambarino
+ PDF Chat On $C^1$-persistently expansive homoclinic classes 2006 Martı́n Sambarino
José Vieitez
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>-persistently continuum-wise expansive homoclinic classes and recurrent sets 2012 Tarun Das
Keonhee Lee
Manseob Lee
+ Homoclinic tangencies and dominated splittings 2002 Lan Wen
+ Steps towards a classification of $C^r$-generic dynamics close to homoclinic points 2014 Nicolas Gourmelon
+ Area-Preserving Diffeomorphisms from theC 1Standpoint 2011 Mário Bessa
+ On the indices of periodic points in $C^1$-generic wild homoclinic classes in dimension three 2010 Katsutoshi Shinohara
+ PDF Chat Robust entropy expansiveness implies generic domination 2010 Maria José Pacífico
José Vieitez
+ Newhouse phenomenon and homoclinic classes 2007 Jiagang Yang
+ PDF Chat Usual limit shadowable homoclinic classes of generic diffeomorphisms 2012 Manseob Lee
+ PDF Chat Stably asymptotic average shadowing property and dominated splitting 2012 Manseob Lee
+ Partially hyperbolic and transitive dynamics generated by heteroclinic cycles 2001 Lorenzo J. Díaz
Jorge Rocha
+ PDF Chat Entropy of $C^1$ diffeomorphisms without a dominated splitting 2018 Jérôme Buzzi
Sylvain Crovisier
Todd Fisher
+ Super exponential divergence of periodic points for C^1-generic partially hyperbolic homoclinic classes 2021 Xiaolong Li
Katsutoshi Shinohara
+ PDF Chat Generation of homoclinic tangencies by $C^1$-perturbations 2009 Nikolaz Gourmelon
+ PDF Chat On the index problem of $C^1$-generic wild homoclinic classes in dimension three 2011 Katsutoshi Shinohara
+ $C^1$-generic dynamics: tame and wild behaviour 2003 Christian Bonatti