Some quantitative results in $C^0$ symplectic geometry

Type: Preprint

Publication Date: 2014-01-01

Citations: 12

DOI: https://doi.org/10.48550/arxiv.1404.0875

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Some quantitative results in $${\mathcal {C}}^0$$ C 0 symplectic geometry 2015 Lev Buhovsky
Emmanuel Opshtein
+ Quantitative $h$-principle for isotropic embeddings and applications to $C^0$-symplectic geometry 2016 Lev Buhovsky
Jaime Bustillo
Emmanuel Opshtein
+ Quantitative $h$-principle for isotropic embeddings and applications to $C^0$-symplectic geometry 2016 Lev Buhovsky
J. Bustillo
Emmanuel Opshtein
+ PDF Chat Coisotropic rigidity and C0-symplectic geometry 2015 Vincent Humilière
Rémi Leclercq
Sobhan Seyfaddini
+ Symplectic Camel theorems and ${\mathcal C}^0$-rigidity of coisotropic submanifolds 2022 Emmanuel Opshtein
+ $C^0$-characterization of symplectic and contact embeddings and Lagrangian rigidity 2016 Stefan Müller
+ $C^0$-characterization of symplectic and contact embeddings and Lagrangian rigidity 2016 Stefan C. Müller
+ A survey on volume-preserving rigidity 2022 Stéphane Tchuiaga
+ PDF Chat Coisotropic Hofer–Zehnder capacities and non-squeezing for relative embeddings 2020 Samuel Lisi
Antonio Rieser
+ $C^0$-characterization and $C^0$-rigidity of symplectic and contact embeddings 2016 Stefan Müller
+ Coisotropic Hofer-Zehnder capacities and non-squeezing for relative embeddings 2013 Samuel Lisi
Antonio Rieser
+ Symplectic capacities 1994 Helmut Hofer
Eduard Zehnder
+ A Symplectically Non-Squeezable Small Set and the Regular Coisotropic Capacity 2012 Jan Swoboda
Fabian Ziltener
+ A Symplectically Non-Squeezable Small Set and the Regular Coisotropic Capacity 2012 Jan Swoboda
Fabian Ziltener
+ Symplectic rigidity: Lagrangian submanifolds 1994 Michèle Audin
François Lalonde
Leonid Polterovich
+ PDF Chat A symplectically non-squeezable small set and the regular coisotropic capacity 2013 Jan Swoboda
Fabian Ziltener
+ PDF Chat C0-characterization of symplectic and contact embeddings and Lagrangian rigidity 2019 Stefan Müller
+ Quantitative $h$-principle in symplectic geometry 2021 Lev Buhovsky
Emmanuel Opshtein
+ PDF Chat Weinstein exactness of nearby Lagrangians and the Lagrangian $C^{0}$ flux conjecture 2024 Jean-Philippe Chassé
Rémi Leclercq
+ A New Capacity for Symplectic Manifolds 1990 Helmut Hofer
Eduard Zehnder