Double Bruhat cells and total positivity

Type: Article

Publication Date: 1999-01-01

Citations: 358

DOI: https://doi.org/10.1090/s0894-0347-99-00295-7

Abstract

We study the totally nonnegative variety <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G Subscript greater-than-or-equal-to 0"> <mml:semantics> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">G_{\ge 0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in a semisimple algebraic group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. These varieties were introduced by G. Lusztig, and include as a special case the variety of unimodular matrices of a given order whose all minors are nonnegative. The geometric framework for our study is provided by intersecting <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G Subscript greater-than-or-equal-to 0"> <mml:semantics> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">G_{\ge 0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with double Bruhat cells (intersections of cells of the two Bruhat decompositions of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with respect to opposite Borel subgroups).

Locations

  • Journal of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Total positivity in the De Concini-Procesi Compactification 2004 Xuhua He
+ PDF Chat Class groups, totally positive units, and squares 1986 Hugh M. Edgar
R. A. Mollin
Brian L. Peterson
+ None 2004 Xuhua He
+ Double Bruhat cells and total positivity 1998 Sergey Fomin
Andrei Zelevinsky
+ PDF Chat Totally positive units and squares 1983 Ian Hughes
R. A. Mollin
+ Total positivity in partial flag manifolds 1998 G. Lusztig
+ Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties 2002 Konstanze Rietsch
+ PDF Chat Totally positive skew-symmetric matrices 2024 Jonathan Boretsky
Vicente Cortés
Yassine El Maazouz
+ PDF Chat Sign variation, the Grassmannian, and total positivity 2015 Steven N. Karp
+ Total nonnegativity of GCD matrices and kernels 2019 Dominique Guillot
Jiaru Wu
+ Generalizations of Total Positivity 2020 Sunita Chepuri
+ Positivity, sums of squares and the multi-dimensional moment problem 2002 Salma Kuhlmann
M. Marshall
+ On totally positive matrices and geometric incidences 2014 Miriam Farber
Saurabh Ray
Shakhar Smorodinsky
+ PDF Chat Total Positivity and Cluster Algebras 2011 Sergey Fomin
+ Combinatorics and total positivity 1995 Francesco Brenti
+ PDF Chat Product structure and regularity theorem for totally nonnegative flag varieties 2024 Huanchen Bao
Xuhua He
+ Totally positive matrices 1987 T. Andô
+ Trinomials, torus knots and chains 2022 Waldemar Barrera
Julio C. Magaña-Cáceres
Juan Pablo Navarrete
+ None 2000 Andrei Zelevinsky
+ Counting weighted maximal chains in the circular Bruhat order 2021 Gopal Goel
Olivia McGough
David Perkinson