Type: Article
Publication Date: 2000-01-01
Citations: 14
DOI: https://doi.org/10.2307/44153170
This note contains a proof of the Fundamental Theorem of Calculus for the Lebesque-Bochner integral using Hausdorff measures (see 2.4). For the real case $(X=\mathbb{R})$, this proof uses only the basics from the Lebesque integral theory (see 2.6).
Action | Title | Year | Authors |
---|---|---|---|
+ | Geometric Measure Theory | 1988 |
Herbert Fédérer |
+ | Handbook of Analysis and Its Foundations | 1997 |
Eric Schechter |
+ PDF Chat | Measure, topology, and fractal geometry | 1991 |
Jillian L. Ewing F. W. Gehring Paul R. Halmos |