Sharp global well-posedness for KdV and modified KdV on ℝ and 𝕋

Type: Article

Publication Date: 2003-01-29

Citations: 520

DOI: https://doi.org/10.1090/s0894-0347-03-00421-1

Locations

  • Journal of the American Mathematical Society - View
  • Journal of the American Mathematical Society - View

Similar Works

Action Title Year Authors
+ Sharp Global well-posedness for KdV and modified KdV on $\R$ and $\T$ 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ PDF On local well-posedness and ill-posedness results for a coupled system of mkdv type equations 2020 Xavier Carvajal
Liliana Esquivel
Raphael Santos
+ Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: The periodic case 2012 Luc Molinet
Stéphane Vento
+ PDF Global Well-Posedness for $$H^{-1}(\mathbb {R})$$ Perturbations of KdV with Exotic Spatial Asymptotics 2022 Thierry Laurens
+ PDF Chat WELL-POSEDNESS FOR A FAMILY OF PERTURBATIONS OF THE KdV EQUATION IN PERIODIC SOBOLEV SPACES OF NEGATIVE ORDER 2013 Xavier Carvajal Paredes
Ricardo A. Pastrán
+ Global well-posedness for the modified korteweg-de vries equation 1999 German Fonsecal
Felipe Linares
Gustavo Ponce
+ PDF Chat Global well-posedness of Korteweg–de Vries equation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>H</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false">/</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2009 Zihua Guo
+ On the existence and uniqueness of global solutions for the KdV equation with quasi-periodic initial data 2015 David Damanik
Michael Goldstein
+ Large data local well-posedness for a class of KdV-type equations 2014 Benjamin Harrop‐Griffiths
+ Local and global well-posedness for the KdV equation at the critical regularity (Nonlinear evolution equations and mathematical modeling) 2010 展 岸本
+ Local and global well-posedness for the KdV equation at the critical regularity (Nonlinear evolution equations and mathematical modeling) 2010 Nobu Kishimoto
+ Global Well-Posedness for a Coupled Modified KdV System 2011 Adán J. Corcho
Mahendra Panthee
+ Global Well-Posedness for a Coupled Modified KdV System 2011 Adán J. Corcho
Mahendra Panthee
+ Well-posedness for the fifth-order KdV equation in the energy space 2014 Carlos E. Kenig
Didier Pilod
+ On global well-posedness of the modified KdV equation in modulation spaces 2018 Tadahiro Oh
Yuzhao Wang
+ Sharp well-posedness for a coupled system of mKdV type equations 2018 Xavier Carvajal
Mahendra Panthee
+ PDF On global well-posedness of the modified KdV equation in modulation spaces 2021 Tadahiro Oh
Yuzhao Wang
+ PDF Well-posedness and critical index set of the Cauchy problem for the coupled KdV-KdV systems on $ \mathbb{T} $ 2022 Xin Yang
Bing‐Yu Zhang
+ Global Well-Posedness for the Fifth-Order KdV Equation in $$H^{-1}(\pmb {\mathbb {R}})$$ 2021 Bjoern Bringmann
Rowan Killip
Monica Vişan
+ Local well-posedness for the fifth-order KdV equations on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="double-struck">T</mml:mi></mml:math> 2016 Chulkwang Kwak