New bounds for Szemeredi's theorem, II: A new bound for $r_4(N)$

Type: Preprint

Publication Date: 2006-01-01

Citations: 9

DOI: https://doi.org/10.48550/arxiv.math/0610604

Locations

  • arXiv (Cornell University) - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • arXiv (Cornell University) - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ New bounds for Szemerédi's theorem, III: A polylogarithmic bound for $r_4(N)$ 2017 Ben Green
Terence Tao
+ PDF NEW BOUNDS FOR SZEMERÉDI'S THEOREM, III: A POLYLOGARITHMIC BOUND FOR 2017 Ben Green
Terence Tao
+ A Constructive Lower Bound on Szemerédi's Theorem 2017 Vladislav Taranchuk
+ PDF Chat ON A GENERALIZATION OF SZEMERÉDI'S THEOREM 2006 Ilya D. Shkredov
+ On a Generalization of Szemeredi's Theorem 2005 Ilya D. Shkredov
+ A New Proof of Szemer�di's Theorem for Arithmetic Progressions of Length Four 1998 W. T. Gowers
+ PDF Chat New bounds for Szemerédi's theorem, I: progressions of length 4 in finite field geometries 2008 Ben Green
Terence Tao
+ New bounds for Szemeredi's theorem, Ia: Progressions of length 4 in finite field geometries revisited 2012 Ben Green
Terence Tao
+ Bourgain-Chang's proof of the weak Erdős-Szemerédi conjecture 2017 Dmitrii Zhelezov
+ PDF Chat New lower bounds for $r_3(N)$ 2024 Zach Hunter
+ Better bound for the Erdős-Szekeres number 2021 Imre Bárány
+ A new proof of Szemerédi's theorem 2001 W. T. Gowers
+ Bourgain-Chang's proof of the weak Erd\H{o}s-Szemer\'edi conjecture 2017 Dmitrii Zhelezov
+ PDF An improved lower bound related to the Furstenberg-Sárközy theorem 2015 Mark Lewko
+ PDF On Erdős and Sárközy’s sequences with Property P 2016 Christian Elsholtz
Stefan Planitzer
+ A new upper bound for sets with no square differences 2020 Thomas F. Bloom
James E. Maynard
+ New bounds in Balog-Szemerédi-Gowers theorem 2014 Tomasz Schoen
+ PDF Chat A new upper bound for sets with no square differences 2022 Thomas F. Bloom
James Maynard
+ A generalization of sets without long arithmetic progressions based on Szekeres algorithm 2013 Xiaodong Xu
+ PDF Contributions to the Erdös-Szemerédi theory of sieved integers 1980 Mangala J Narlikar
K. Ramachandra