The Hopf algebra structure of $K_*(\Omega Sp (n))$

Type: Article

Publication Date: 1979-01-01

Citations: 3

DOI: https://doi.org/10.1215/kjm/1250522435

Abstract

Let G be a compact connected Lie group and QG the space of loops on G .R. Bott introduced an idea "the generating variety" for Q G and determined the bicommutative Hopf algebra H ( Q G ) for G= S U (n), S pin(n) and G , ([5]).Recently, F. Clarke determined the Hopf algebra structure of K ( Q G ) for G = S U(n), S pin(n) and G , where I( * ( ) is the Z/2Z-graded K-homology theory using the generating varieties ([8]).But the results for G= S p(n) is not known.In our recent paper [10], A. Kono and myself determined the Hopf algebrawhere h , ( ) is a complex oriented homology theory.However the method used there is not applicable for 1 -1,(S2Sp(n)) with h= K or MU.The purpose of this paper is to determine IC,(QSp(n)) as a Hopf algebra over Z .By the result of R. Bott, QS U and B U are homotopy equivalent as an H-space, and the Hopf algebraAs in proved in [10], we may consider K, k (S2Sp) a s a Hopf subalgebra of K (S 2 S U ) b y ( Q e ) * w h e re c: S p->S U is the complexification m a p .Moreover 1<",(S2Sp(n)) is a Hopf subalgebra of K (Q S p ) (cf.Theorem 1.1).Let R be a commutative ring with unit andthe diagonal 0 is given by Or2kj - (11=IT)(x)+ (P,, C 1 1 )(x) x • (F1=1F.)(x) 101 + (P"E P,i )(x)where F ( x ) = E7= , r2 i _1x 2 -1 and [E a i xi] 1 denotes the coefficient of x 5 in E a i xi.

Locations

  • Kyoto journal of mathematics - View - PDF

Similar Works

Action Title Year Authors
+ The stable cooperations of Morava $K$-Theory and the fiber product of automorphism groups of formal group laws 2022 Masateru Inoue
+ PDF Chat The Hopf algebra structure of $MU_*(\Omega Sp(n))$ 1983 Kazumoto Kozima
+ The Coalgebra Automorphism Group of Hopf Algebra $k_q[x, x^{-1}, y]$ 2012 Huixiang Chen
+ Connected Hopf algebras of dimension<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> 2013 Xingting Wang
+ K_0 Group Structures of Smash Product Algebras on Hopf Algebras 2003 Dong Wen-ting
+ Quasi‐Hopf Algebras and the Centre of a Tensor Category 2019 Florin Panaite
Freddy Van Oystaeyen
+ The Hopf algebra structure of MU* (Ω Sp(n)) 1982 一元 小島
+ Cocyclic complexes of Hopf algebras with special antipodes 2021 Mengjun Wang
Zhixiang Wu
+ Hopf quasigroups and the algebraic 7-sphere 2009 J. Klim
Shahn Majid
+ Oriented Quantum Coalgebra Structure on the Tensor Product of an Oriented Quantum Coalgebra with Itself 2009 Tian-Shui Ma
Shuanhong Wang
+ On representation rings in the context of monoidal categories 2014 Min Huang
Fang Li
Yichao Yang
+ Classification of Hopf Path Coalgebras over Dihedral Group 2007 WU Mei-yun
+ H∗Spin(N) as a Hopf algebra 1977 J. P. May
A. Zabrodsky
+ PDF Chat The structures of Hopf $\ast$-algebra on Radford algebras 2018 Hassan Suleman Esmael Mohammed
Huixiang Chen
+ Construction Classification of Hopf Path Coalgebras over Dihedral Group(III) 2007 WU Mei-yun
+ The Hopf algebra Rep $ U_{q} \widehat{\frak g \frak l}_\infty $ 2002 Edward Frenkel
E. Mukhin
+ On Hopf algebras of dimension $p^n$ in characteristic $p$ 2023 Siu‐Hung Ng
Xingting Wang
+ The Structure of the Hopf Algebra H * (BU) over a Z (p) -Algebra 1971 Dale Husemöller
+ PDF Chat Hopfological Algebra for Infinite Dimensional Hopf Algebras 2020 Marco A. Farinati
+ Hopf Forms and Hopf-Galois Theory 2020 Timothy Kohl
Robert A. Underwood