Asymptotics for sharp Sobolev-Poincaré inequalities on compact Riemannian manifolds

Type: Article

Publication Date: 2002-01-01

Citations: 4

DOI: https://doi.org/10.57262/ade/1356651583

Abstract

Given $(M,g)$ a smooth compact Riemannian manifold of dimension $n \ge 3$, there exist $A, B > 0$ such that for any $u \in H_1^2(M)$, $$\Vert u\Vert_{2^\star}^2 \le A\Vert\nabla u\Vert_2^2 + B\Vert u\Vert_1^2 , $$ where $H_1^2(M)$ is the standard Sobolev space consisting of functions in $L^2(M)$ whose gradient is also in $L^2(M)$. The best possible $A$ in this inequality is $K_n^2$, where $K_n$ is the sharp constant $K$ in the Euclidean Sobolev inequality $\Vert u\Vert_{2^\star} \le K\Vert\nabla u\Vert_2$. Thanks to previous work by Druet-Hebey-Vaugon and Hebey, it turns out that the above inequality with $A = K_n^2$ is always true when $n = 3$, in other words without any assumption on the manifold, and true when $n = 4$ if the scalar curvature is everywhere negative, or the scalar curvature is nonpositive and the manifold is conformally flat, or the sectional curvature is nonpositive and a local isoperimetric inequality as in the Cartan-Hadamard conjecture holds. On the contrary, thanks to previous works by Druet-Hebey-Vaugon, the inequality with $A = K_n^2$ is false when $n \ge 4$ and the scalar curvature is positive somewhere. Independent considerations give that for any $\varepsilon > 0$ there exists $B_\varepsilon$ such that for any $u\in H_1^2(M)$, $$\Vert u\Vert_{2^\star}^2 \le (K_n^2+\varepsilon)\Vert\nabla u\Vert_2^2 + B_\varepsilon\Vert u\Vert_1^2 . $$ Defining $B_\varepsilon(g)$ as the smallest $B_\varepsilon$ in this inequality, the difficult question we are concerned with in this article is to describe the asymptotic behavior of $B_\varepsilon(g)$ as $\varepsilon\to 0$. A complete answer to this question is given.

Locations

  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • Advances in Differential Equations - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Sharp Sobolev-Poincaré inequalities on compact Riemannian manifolds 2001 Emmanuel Hebey
+ PDF Chat A sharp Sobolev inequality on Riemannian manifolds 2003 Yanyan Li
Tonia Ricciardi
+ PDF Chat A Sharp Higher Order Sobolev Inequality on Riemannian Manifolds 2024 Samuel Zeitler
+ PDF Chat Extremals for sharp GNS inequalities on compact manifolds 2014 Emerson Abreu
Jurandir Ceccon
Marcos Montenegro
+ PDF Chat Sharp Morrey-Sobolev Inequalities on Complete Riemannian Manifolds 2014 Alexandru Kristály
+ Sharp L^p-entropy inequalities on manifolds 2013 Jurandir Ceccon
Marcos Montenegro
+ A sharp Sobolev inequality on Riemannian manifolds 2002 Yanyan Li
Tonia Ricciardi
+ Sharp <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup></mml:math>-entropy inequalities on manifolds 2015 Jurandir Ceccon
Marcos Montenegro
+ ASYMPTOTIC PROFILE FOR THE SUB-EXTREMALS OF THE SHARP SOBOLEV INEQUALITY ON THE SPHERE 2001 Olivier Druet
Frédéric Robert
+ PDF Chat Attaining the optimal constant for higher-order Sobolev inequalities on manifolds via asymptotic analysis 2024 Lorenzo Carletti
+ Topological rigidity of compact manifolds supporting Sobolev-type inequalities 2019 Csaba Farkas
Alexandru Kristály
Ágnes Mester
+ Topological rigidity of compact manifolds supporting Sobolev-type inequalities 2019 Csaba Farkas
Alexandru Kristály
Ágnes Mester
+ Sharp constants in Riemannian<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup></mml:math>-Gagliardo–Nirenberg inequalities 2015 Jurandir Ceccon
Carlos Durán
+ On a sharp inequality of L. Fontana for compact Riemannian manifolds 2017 Yunyan Yang
+ Extremal functions in Poincare-Sobolev inequalities for functions of bounded variation 2010 Vincent Bouchez
Jean Van Schaftingen
+ On the compactness problem of extremal functions to sharp Riemannian <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup></mml:math>-Sobolev inequalities 2010 Ezequiel Barbosa
Marcos Montenegro
+ Optimal constants in the exceptional case of Sobolev inequalities on Riemannian manifolds 2007 Zoé Faget
+ Sharp $L^p$-Moser inequality on Riemannian manifolds 2014 Marcos Teixeira Alves
Jurandir Ceccon
+ PDF Chat Sharp isoperimetric and Sobolev inequalities in spaces with nonnegative Ricci curvature 2022 Zoltán M. Balogh
Alexandru Kristály
+ Sharp $L^p$-Moser inequality on Riemannian manifolds 2014 Marcos Teixeira Alves
Jurandir Ceccon

Works Cited by This (0)

Action Title Year Authors