Group rings whose symmetric elements are Lie nilpotent

Type: Article

Publication Date: 1999-05-04

Citations: 29

DOI: https://doi.org/10.1090/s0002-9939-99-05155-2

Locations

  • Proceedings of the American Mathematical Society - View

Similar Works

Action Title Year Authors
+ PDF Chat A Lie property in group rings 1989 Antonio Giambruno
Sudarshan K. Sehgal
+ PDF Chat Prime rings with involution whose symmetric zero-divisors are nilpotent 1973 P. M. Cohn
+ PDF Chat Group algebras whose units satisfy a group identity 1997 Antonio Giambruno
Sudarshan K. Sehgal
A. Valenti
+ PDF Chat Group algebras whose units satisfy a group identity. II 1997 D. S. Passman
+ PDF Chat Rings of invariant polynomials for a class of Lie algebras 1971 S. J. Takiff
+ PDF Chat Grothendieck groups of algebras with nilpotent annihilators 1988 Maurice Auslander
Idun Reiten
+ PDF Chat On the semisimplicity of group rings of solvable groups 1972 C. R. Hampton
D. S. Passman
+ PDF Chat Generation of finite groups of Lie type 1982 Gary M. Seitz
+ PDF Chat Group rings whose torsion units form a subgroup 1981 César Polcino Milies
+ Nilpotent subgroups of class 2 in finite groups 2021 Luca Sabatini
+ PDF Chat Trace-like functions on rings with no nilpotent elements 1982 Miriam Cohen
Susan Montgomery
+ PDF Chat Group rings with solvable 𝑛-Engel unit groups 1976 James L. Fisher
M. M. Parmenter
Surinder K. Sehgal
+ PDF Chat On automorphism groups and endomorphism rings of abelian 𝑝-groups 1975 Jutta Hausen
+ Finite subgroups of algebraic groups 2011 Michael Larsen
Richard Pink
+ Subfield symmetric spaces for finite special linear groups 2004 Toshiaki Shoji
Karine Sorlin
+ PDF Chat Finite Groups Which are Almost Groups of Lie Type in Characteristic 𝐩 2023 Christopher Parker
Gerald Pientka
Andreas Seidel
Gernot Stroth
+ PDF Chat 𝑅-automorphisms of 𝑅[𝐺] for 𝐺 abelian torsion-free 1976 David Lantz
+ PDF Chat The Connes spectrum of group actions and group gradings for certain quotient rings 1995 James Osterburg
Xue Yao
+ PDF Chat Normal subgroups of the general linear groups over von Neumann regular rings 1986 L. N. Vaserstein
+ PDF Chat Every finite abelian group is the Brauer group of a ring 1981 Timothy J. Ford