On the structure of the Schrödinger propagator

Type: Preprint

Publication Date: 2003-01-01

Citations: 5

DOI: https://doi.org/10.48550/arxiv.math/0308278

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat The radiation field is a Fourier integral operator 2005 Antônio Sá Barreto
Jared Wunsch
+ PDF Chat Analytic singularities for long range Schrödinger equations 2008 André Martínez
Shu Nakamura
Vania Sordoni
+ Propagation of singularities and Fredholm analysis for the time-dependent Schrödinger equation 2022 Jesse Gell‐Redman
Sean Gomes
Andrew Hassell
+ PDF Chat Semiclassical singularities propagation property for Schrödinger equations 2009 Shu Nakamura
+ On the long time behavior of solutions of Schrödinger's equation 2011 Jian Xie
+ The radiation field is a Fourier integral operator 2003 Antônio Sá Barreto
Jared Wunsch
+ Semiclassical Singularity Propagation Property for Schrödinger Equations 2006 Shu Nakamura
+ Dispersive equations on asymptotically conical manifolds: time decay in the low-frequency regime 2023 Viviana Grasselli
+ PDF Chat Analytic Wave Front Set for Solutions to Schrödinger Equations II – Long Range Perturbations 2010 André Martínez
Shu Nakamura
Vania Sordoni
+ Geometric wave propagator on Riemannian manifolds 2019 Matteo Capoferri
Michael Levitin
Dmitri Vassiliev
+ PDF Chat Geometric wave propagator on Riemannian manifolds 2022 Matteo Capoferri
Michael Levitin
Dmitri Vassiliev
+ The Schroedinger propagator for scattering metrics 2003 Andrew Hassell
Jared Wunsch
+ Singularities of solutions to the Schrödinger equation on scattering manifold 2009 Kenichi Ito
Shu Nakamura
+ PDF Chat Semiclassical analysis of the Schrödinger equation with conical singularities 2017 Victor Chabu
+ Propagation of singularities and growth for Schrödinger operators 1999 Jared Wunsch
+ Singularities of solutions to Schrodinger equation on scattering manifold 2007 Kenichi Ito
Shu Nakamura
+ On the asymptotic behavior of large radial data for a focusing non-linear Schr\ 2003 Terence Tao
+ The effect of metric behavior at spatial infinity on pointwise wave decay in the asymptotically flat stationary setting 2020 Katrina Morgan
+ Global in time Strichartz inequalities on asymptotically flat manifolds with temperate trapping 2016 Jean‐Marc Bouclet
Haruya Mizutani
+ PDF Chat The Schrödinger propagator for scattering metrics 2005 Andrew Hassell
Jared Wunsch