Well-posedness for the Kadomtsev-Petviashvili II equation

Type: Article

Publication Date: 2000-01-01

Citations: 34

DOI: https://doi.org/10.57262/ade/1356651228

Abstract

We study the well-posedness for the Cauchy problem of the KP II equation. We prove the local well-posedness in the anisotropic Sobolev spaces $H_{x,y}^{-1/4+\epsilon,0}$ and in the anisotropic homogeneous Sobolev spaces $H_{x,y}^{-1/2+4\epsilon,0}\cap\dot{H}_{x,y}^{-1/2+\epsilon,0}$. The first result is an improvement of the result in $L^2$ obtained by J. Bourgain [2].

Locations

  • Advances in Differential Equations - View - PDF

Similar Works

Action Title Year Authors
+ Global well-posedness for the Kadomtsev-Petviashvili II equation 2000 Hideo Takaoka
+ PDF Chat Well-posedness for the Kadomtsev-Petviashvili II equation and generalisations 2008 Martin Hadac
+ On the cauchy problem for kadomtsev-petviashvili equation 1999 Nickolay Tzvetkov
+ Well-posedness for the Kadomtsev-Petviashvili II equation and generalisations 2006 Martin Hadac
+ Sharp well-posedness for Kadomtsev-Petviashvili-Burgers (KPBII) equation in $R^2$ 2006 Bassam Kojok
+ LOCAL AND GLOBAL CAUCHY PROBLEMS FOR THE KADOMTSEV–PETVIASHVILI (KP–II) EQUATION IN SOBOLEV SPACES OF NEGATIVE INDICES 2001 Pedro Isaza
Jorge Mejía
+ PDF Chat Well-posedness and scattering for the KP-II equation in a critical space 2008 Martin Hadac
Sebastian Herr
Herbert Koch
+ Global well-posedness of the generalized KP-II equation in anisotropic Sobolev spaces 2017 Wei Yan
Yongsheng Li
Yimin Zhang
+ The Cauchy problem for two dimensional generalized Kadomtsev-Petviashvili-I equation in anisotropic Sobolev spaces 2017 Yan Wei
Yongsheng Li
Jianhua Huang
Jinqiao Duan
+ Global solution for the Kadomtsev-Petviashvili equation (KPII) in anisotropic Sobolev spaces of negative indices 2003 Pedro Isaza J.
Jorge Mejía L.
+ Sharp well-posedness for Kadomtsev–Petviashvili–Burgers (KPBII) equation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="double-struck">R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> 2007 Bassam Kojok
+ PDF Chat The Cauchy problem for a two-dimensional generalized Kadomtsev–Petviashvili-I equation in anisotropic Sobolev spaces 2019 Wei Yan
Yongsheng Li
Jianhua Huang
Jinqiao Duan
+ The Cauchy problem for two dimensional fifth-order Kadomtsev-Petviashvili-I equation in anisotropic Sobolev spaces 2017 Wei Yan
Yongsheng Li
Jianhua Huang
Jinqiao Duan
+ The Cauchy Problem for the Kadomtsev-Petviashvili (KPII) Equation in Three Space Dimensions 2007 Pedro Isaza J.
Juan C. López C.
Jorge Mejía L.
+ On the local well-posedness of the Kadomtsev-Petviashvili II equation 2007 Martin Hadac
+ Global well-posedness of the Cauchy problem for a fifth-order KP-I equation in anisotropic Sobolev spaces 2017 Yongsheng Li
Wei Yan
Yimin Zhang
+ Recent Progress on the Global Well-Posedness of the KPI Equation 2009 Carlos E. Kenig
+ Well-posedness of the Fifth Order Kadomtsev-Petviashvili I Equation in Anisotropic Sobolev Spaces with Nonnegative Indices 2008 Junfeng Li
Jie Xiao
+ Global well-posedness and scattering for small data for the 3-d KP-II Cauchy problem 2016 Herbert Koch
Junfeng Li
+ PDF Chat Global well-posedness in the energy space for a modified KP II equation via the Miura transform 2006 Carlos E. Kenig
Yvan Martel