A 2-Coloring of $[1,N]$ can have $(1/22)N^2+O(N)$ Monochromatic Schur Triples, but not less!

Type: Article

Publication Date: 1998-03-25

Citations: 31

DOI: https://doi.org/10.37236/1357

Abstract

We prove the statement of the title, thereby solving a $100 problem of Ron Graham. This was solved independently by Tomasz Schoen.

Locations

  • The Electronic Journal of Combinatorics - View - PDF

Similar Works

Action Title Year Authors
+ A 2-coloring of [1,n] can have (n^2)/22 + O(n) monochromatic Schur triples, but not less! 1998 Aaron Robertson
Doron Zeilberger
+ A 2-coloring of $[1,n]$ can have $\frac{n^2}{2a(a^2+2a+3)} + O(n)$ monochromatic triples of the form $\{x,y,x+ay\}, a \geq 2$, but not less! 2008 Thotsaporn Thanatipanonda
+ On the monochromatic Schur Triples type problem 2008 Thotsaporn Thanatipanonda
+ On the monochromatic Schur Triples type problem 2008 Thotsaporn Thanatipanonda
+ PDF Chat On the Monochromatic Schur Triples Type Problem 2009 Thotsaporn Thanatipanonda
+ PDF Chat An Unsure Note on an Un-Schur Problem 2024 Olaf Parczyk
Christoph Spiegel
+ The Number of Monochromatic Schur Triples 1999 Tomasz Schoen
+ On the Minimum Number of Monochromatic Generalized Schur Triples, $(x,y,x+ay), \, a\geq 2$, over any 2-coloring of $[1,n]$ 2016 Thotsaporn Thanatipanonda
Elaine Wong
+ PDF Chat Monochromatic Schur Triples in Randomly Perturbed Dense Sets of Integers 2019 Elad Aigner‐Horev
Yury Person
+ No-hole L(2,1)-colorings 2003 Peter C. Fishburn
Fred S. Roberts
+ On the Minimum Number of Monochromatic Generalized Schur Triples 2017 Thotsaporn Thanatipanonda
Elaine Wong
+ Monochromatic Schur triples in randomly perturbed dense sets of integers 2018 Elad Aigner‐Horev
Yury Person
+ Monochromatic Schur triples in randomly perturbed dense sets of integers 2018 Elad Aigner‐Horev
Yury Person
+ PDF Chat On the minimum number of monochromatic 2-dimensional Schur triples 2024 Aaron Robertson
+ PDF Chat Generalized Schur Numbers for $x_1 + x_2 + c = 3x_3$ 2009 André E. Kézdy
Hunter S. Snevily
Susan C. White
+ PDF Chat Optimal bounds on the polynomial Schur's theorem 2024 Jaehoon Kim
Hong Liu
Péter Pál Pach
+ A Lower Bound for Schur Numbers and Multicolor Ramsey Numbers 1994 Geoffrey Exoo
+ On the number of monochromatic Schur triples 2003 Boris A. Datskovsky
+ On the 3-Color Ramsey Numbers $$R(C_4,C_4,W_{n})$$ 2022 Xuemei Zhang
Yaojun Chen
T.C.E. Cheng
+ PDF Chat Schur numbers involving rainbow colorings 2020 Mark Budden