๐ฟยฒ(๐บ_{๐‘„}\๐บ_{๐ด}) is not always multiplicity-free

Type: Article

Publication Date: 1976-01-01

Citations: 1

DOI: https://doi.org/10.1090/s0002-9939-1976-0399370-9

Abstract

We show that there are solvable adelic groups <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G Subscript bold upper A"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">A</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{G_{\mathbf {A}}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whose action on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L squared left-parenthesis upper G Subscript bold upper Q Baseline minus upper G Subscript bold upper A Baseline right-parenthesis comma upper G Subscript bold upper Q Baseline minus upper G Subscript bold upper A Baseline"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Q</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:mi class="MJX-variant" mathvariant="normal">โˆ–<!-- โˆ– --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">A</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Q</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:mi class="MJX-variant" mathvariant="normal">โˆ–<!-- โˆ– --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">A</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^2}({G_{\mathbf {Q}}}\backslash {G_{\mathbf {A}}}),{G_{\mathbf {Q}}}\backslash {G_{\mathbf {A}}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> compact, it is not multiplicity-free.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Hall subgroups and ๐‘-solvability 1975 Allan Missael Henriques Gonรงalves
Chat Yin Ho
+ Characterizations of the solvable radical 2009 Paul Flavell
Simon D. Guest
Robert M. Guralnick
+ PDF Chat On the number of solutions of the equation ๐‘ฅ^{๐‘^{๐‘˜}}=๐‘Ž in a finite ๐‘-group 1992 Yakov Berkovich
+ PDF Chat On an analogue of Selbergโ€™s eigenvalue conjecture for ๐‘†๐ฟโ‚ƒ(๐™) 1998 Sultan Catto
J. M. Huntley
Jay Jorgenson
David E. Tepper
+ PDF Chat Equations in free groups are not finitely approximable 1999 Thierry Coulbois
Anatole Khรฉlif
+ PDF Chat Solvable groups with $\pi $-isolators 1984 A. H. Rhemtulla
A. Weiss
Mohamed Yousif
+ PDF Chat Primitive elements in free groups 1989 Martin Evans
+ โ„ฌ-free sets and dynamics 2017 Aurelia Dymek
Stanisล‚aw Kasjan
Joanna Kuล‚aga-Przymus
Mariusz Lemaล„czyk
+ Free nilpotent groups are ๐ถ*-superrigid 2019 Tron Omland
+ PDF Chat Cycles in ๐ถ^{๐‘Ÿ}-twists 1995 C. R. Carroll
+ PDF Chat The ฮ ยนโ‚‚-singleton conjecture 1990 Sy D. Friedman
+ Large character degrees of solvable 3โ€™-groups 2011 Yong Yang
+ A countable free closed non-reflexive subgroup of โ„ค^{๐” } 2017 M.L. Ferrer
Salvador Hernรกndez
Dmitri Shakhmatov
+ PDF Chat ๐‘„(๐‘ก) and ๐‘„((๐‘ก))-admissibility of groups of odd order 1995 Burton Fein
Murray Schacher
+ Character degrees and nilpotence class of finite ๐‘-groups: An approach via pro-๐‘ groups 2002 Andrei Jaikinโ€Zapirain
Alexander Moretรณ
+ PDF Chat ๐ดโ‚‚-annihilated elements in ๐ป_{*}(ฮฉฮฃ๐‘…๐‘ƒยฒ) 1993 David J. Anick
Franklin P. Peterson
+ PDF Chat Zero divisors and ๐ฟ^{๐‘}(๐บ) 1998 Michael J. Puls
+ PDF Chat A formula for ๐ธ_{๐‘Š}๐‘’๐‘ฅ๐‘(-2โปยน๐‘Žยฒโ€–๐‘ฅ+๐‘ฆโ€–ยฒโ‚‚) 1987 Tzuu-Shuh Chiang
Yun shyong Chow
Yuh-Jia Lee
+ PDF Chat ๐‘†-groups revisited 1981 Roger Hunter
Elbert A. Walker
+ PDF Chat Groups of finite weight 1981 A. H. Rhemtulla

Works That Cite This (1)

Action Title Year Authors
+ None of the Above 2004 Richard K. Guy