On the series for <i>L</i>(1, <i>x</i>)

Type: Article

Publication Date: 1996-03-01

Citations: 2

DOI: https://doi.org/10.1017/s0027763000005559

Abstract

Let k be a positive integer greater than 1, and let X(n ) be a real primitive character modulo k , The series can be divided into groups of k consecutive terms.

Locations

  • Nagoya Mathematical Journal - View - PDF

Similar Works

Action Title Year Authors
+ On the Sum of Powers of the First<i>N</i>Integers 1973 Marvin Lentner
+ On a Series Σ^^n__ x^k 1983 卓夫 熊谷
+ PDF Chat On the Product of <i>L</i>(1, χ) 1953 Tikao Tatuzawa
+ LII.<i>On Dixon's formula for well-poised series</i> 1939 T. M. MacRobert
+ On a Series Involving S(1) ·S(2) ... ·S(n) 2014 Florian Luca
+ PDF Chat LiX. <i>Theorems for the summation of progressional series</i> 1821 James Benwell
+ On the series ∑ k=1 ∞ ( k 3k )−1 k −n x k 2005 Necdet Batır
+ On ‘Sums of the first <i>n</i> integers’ 2023 Paul Stephenson
+ The Sum of the <i>k</i>Th Powers of the First <i>n</i> Integers 1980 Henry J. Schultz
+ On the Sum of the <i>k</i>th Powers of the First <i>n</i> Integers 1971 Jerome L. Paul
+ On the characters of the discrete series 1975 Wilfried Schmid
+ On Character Sums and <i>L</i> -Series. II 1963 D. A. Burgess
+ On the exceptional set for the sum of a prime and a<i>k</i>‐th power 1992 Alessandro Zaccagnini
+ A Factorial Series for the Rational Multiples of <i>e</i> 1958 K. Mahler
+ On a General Class of Series of the Form \Sum c n g (x + n) 1916 R. D. Carmichael
+ PDF Chat The equation ω( <i>n</i> ) = ω( <i>n</i> + 1) 2003 Jan‐Christoph Schlage‐Puchta
+ On the Representation of an Integer as the Sum of <i>k</i> <i>k</i> -th Powers 1936 Paul Erdős
+ PDF Chat XL. <i>On the determination of the general term of a new class of infinite series</i> 1826 Charles Babbage
+ On some series associated with discrete subgroups of U(1,n;C) 1984 Shigeyasu Kamiya
+ On power series with integer coefficients 1975 Ryozo Morikawa
Yasutaka Ihara