On Quantum Unique Ergodicity for Linear Maps of the Torus

Type: Book-Chapter

Publication Date: 2001-01-01

Citations: 17

DOI: https://doi.org/10.1007/978-3-0348-8266-8_37

Abstract

The problem of "quantum ergodicity" addresses the limiting distribution of eigenfunctions of classically chaotic systems. I survey recent progress on this question in the case of quantum maps of the torus. This example leads to analogues of traditional problems in number theory, such as the classical conjecture of Gauss and Artin that any (reasonable) integer is a primitive root for infinitely many primes, and to variants of the notion of Hecke operators.

Locations

  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • BirkhƤuser Basel eBooks - View

Similar Works

Action Title Year Authors
+ PDF Chat On Quantum Ergodicity for Linear Maps of the Torus 2001 P. Kurlberg
Ze x E v Rudnick
+ On quantum ergodicity for linear maps of the torus 1999 PƤr Kurlberg
ZeƩv Rudnick
+ Small scale quantum ergodicity in cat maps. I 2018 Xiaolong Han
+ ON QUANTUM ERGODICITY FOR LINEAR MAPS OF 1999 Ar Kurlberg
Ze Ze
Ev Rudnick
+ PDF Chat Quantum unique ergodicity for parabolic maps 2000 Jens Marklof
ZeƩv Rudnick
+ Quantum Unique Ergodicity and Number Theory 2011 K. Soundararajan
+ Notes on Self-reducibility of the Weil representation and quantum chaos 2007 Shamgar Gurevich
Ronny Hadani
+ PDF Chat Equipartition of the eigenfunctions of quantized ergodic maps on the torus 1996 A. Bouzouina
Stephan De BiĆØvre
+ Quantum ergodicity for shrinking balls in arithmetic hyperbolic manifolds 2020 Dimitrios Chatzakos
Robin Frot
Nicole Raulf
+ PDF Chat Quantum Unique Ergodicity for Maps on the Torus 2006 Lior Rosenzweig
+ Quantum ergodicity for shrinking balls in arithmetic hyperbolic manifolds 2020 Dimitrios Chatzakos
Robin Frot
Nicole Raulf
+ Entropy bounds and quantum unique ergodicity for Hecke eigenfunctions on division algebras 2016 Lior Silberman
Akshay Venkatesh
+ Entropy bounds and quantum unique ergodicity for Hecke eigenfunctions on division algebras 2016 Lior Silberman
Akshay Venkatesh
+ PDF Chat Entropy bounds and quantum unique ergodicity for Hecke eigenfunctions on division algebras 2019 Lior Silberman
Akshay Venkatesh
+ Quantum unique ergodicity for SL_2(Z)\H 2009 K. Soundararajan
+ Arithmetic quantum unique ergodicity for products of hyperbolic $2$- and $3$-manifolds 2022 Zvi Shemā€Tov
Lior Silberman
+ PDF Chat Recent progress on the quantum unique ergodicity conjecture 2011 Peter Sarnak
+ PDF Chat Quantum unique ergodicity for parabolic maps 2000 Jens Marklof
ZeƩv Rudnick
+ PDF Chat On Quantum Ergodicity for Vector Bundles 2006 Ulrich Bunke
Martin Olbrich
+ Notes on the Self-Reducibility of the Weil Representation and Higher-Dimensional Quantum Chaos 2007 Shamgar Gurevich
Ronny Hadani