Logarithmic Vector Fields and Hyperbolicity

Type: Article

Publication Date: 2009-01-01

Citations: 8

DOI: https://doi.org/10.1017/s0027763000009685

Abstract

Abstract Using vector fields on logarithmic jet spaces we obtain some new positive results for the logarithmic Kobayashi conjecture about the hyperbolicity of complements of curves in the complex projective plane. We are interested here in the cases where logarithmic irregularity is strictly smaller than the dimension. In this setting, we study the case of a very generic curve with two components of degrees d 1 ≤ d 2 and prove the hyperbolicity of the complement if the degrees satisfy either d 1 ≥ 4, or d 1 = 3 and d 2 ≥ 5, or d 1 = 2 and d 2 ≥ 8, or d 1 = 1 and d 2 ≥ 11. We also prove that the complement of a very generic curve of degree d at least equal to 14 in the complex projective plane is hyperbolic, improving slightly, with a new proof, the former bound obtained by El Goul.

Locations

  • Nagoya Mathematical Journal - View - PDF
  • arXiv (Cornell University) - PDF
  • Project Euclid (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Logarithmic vector fields and hyperbolicity 2007 Erwan Rousseau
+ PDF Chat On the logarithmic Kobayashi conjecture 2007 Gianluca Pacienza
Erwan Rousseau
+ On the logarithmic Kobayashi conjecture 2006 Gianluca Pacienza
Erwan Rousseau
+ Logarithmic jets and hyperbolicity 2003 Jawher El Goul
+ Logarithmic Jets and Hyperbolicity 2001 Jawher El Goul
+ A survey on hyperbolicity of projective hypersurfaces 2011 Simone Diverio
Erwan Rousseau
+ Hyperbolicity of the complements of general hypersurfaces of high degree 2018 Damian Brotbek
Ya Deng
+ Kobayashi hyperbolicity of the complements of general hypersurfaces of high degree 2018 Damian Brotbek
Ya Deng
+ Kobayashi hyperbolicity of the complements of general hypersurfaces of high degree 2019 Damian Brotbek
Ya Deng
+ Hyperbolicité du complémentaire d'une courbe dans <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>ℙ</mml:mi> <mml:mn>2</mml:mn> </mml:msup></mml:math> : le cas de deux composantes 2003 Erwan Rousseau
+ PDF Chat Logarithmic Jet Bundles and Applications 2001 Gerd-Eberhard Dethloff
Steven Lu
+ Logarithmic Jet Bundles and Applications 2000 Gerd-Eberhard Dethloff
Steven Lu
+ Logarithmic vector fields along smooth plane cubic curves 2008 Kazushi Ueda
Masahiko Yoshinaga
+ Logarithmic vector fields along smooth plane cubic curves 2007 Kazushi Ueda
Masahiko Yoshinaga
+ PDF Chat Complements of plane curves with logarithmic Kodaira dimension zero 2000 Hideo Kojima
+ On the Complement of a Generic Curve in the Projective Plane 1996 Geng Xu
+ Geometry of logarithmic tangent bundles and hyperbolic manifolds 1982 V. A. Babets
+ PDF Chat KAWA lecture notes on complex hyperbolic geometry 2018 Erwan Rousseau
+ Projective plane curves whose complements have logarithmic Kodaira dimension one 2001 Takashi Kishimoto
+ Hyperbolicity of the complement of plane algebraic curves 1993 Gerd Dethloff
Georg Schumacher
Pit-Mann Wong