Operator weak amenability of the Fourier algebra

Type: Article

Publication Date: 2002-06-11

Citations: 51

DOI: https://doi.org/10.1090/s0002-9939-02-06680-7

Abstract

We show that for any locally compact group $G$, the Fourier algebra $\mathrm {A}(G)$ is operator weakly amenable.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Amenability and weak amenability of the Fourier algebra 2002 Brian Forrest
Volker Runde
+ Approximate and pseudo-amenability of the Fourier algebra 2007 F. Ghahramani
Ross Stokke
+ Weak amenability of Fourier algebras on compact groups 2008 Brian Forrest
Ebrahim Samei
Nico Spronk
+ Weak amenability of Fourier algebras and local synthesis of the anti-diagonal 2015 Hun Hee Lee
Jean Ludwig
Ebrahim Samei
Nico Spronk
+ Weak amenability of Fourier algebras and local synthesis of the anti-diagonal 2015 Hun Hee Lee
Jean Ludwig
Ebrahim Samei
Nico Spronk
+ PDF Chat Weak amenability and the second dual of the Fourier algebra 1997 Brian Forrest
+ PDF Chat Weak amenability of Fourier algebras on compact groups 2009 Brian Forrest
Ebrahim Samei
Nico Spronk
+ Weak amenability of Fourier algebras and local synthesis of the anti-diagonal 2016 Hun Hee Lee
Jean Ludwig
Ebrahim Samei
Nico Spronk
+ Operator amenability of the Fourier algebra in the cb-multiplier norm 2005 Brian Forrest
Volker Runde
Nico Spronk
+ The amenability constant of the Fourier algebra 2004 Volker Runde
+ On generalized notions of amenability and operator homology of the Fourier algebra 2017 Mehdi Nemati
+ Cohomology and the Operator Space Structure of the Fourier Algebra and its Second Dual 2001 Brian Forrest
Peter Wood
+ Fourier algebra of a compact Lie group 2001 Roger Plymen
+ PDF Chat Operator amenability of Fourier–Stieltjes algebras 2004 Volker Runde
Nico Spronk
+ PDF Chat Amenability and Derivations of the Fourier Algebra 1988 Brian Forrest
+ Operator amenability of Fourier-Stieltjes algebras, II 2005 Volker Runde
Nico Spronk
+ PDF Chat Amenability and weak amenability of the Fourier algebra 2005 Brian Forrest
Volker Runde
+ $p$-Fourier algebras on compact groups 2014 Hun Hee Lee
Ebrahim Samei
Nico Spronk
+ $p$-Fourier algebras on compact groups 2014 Hun Hee Lee
Ebrahim Samei
Nico Spronk
+ On weak amenability of Fourier algebras 2023 Viktor Losert