Terms in the Selberg trace formula for ${\rm SL}(3,{\bf Z})\backslash {\rm SL}(3,{\bf R})/{\rm SO}(3,{\bf R})$ associated to Eisenstein series coming from a maximal parabolic subgroup

Type: Article

Publication Date: 1989-01-01

Citations: 3

DOI: https://doi.org/10.1090/s0002-9939-1989-0963577-9

Abstract

There are two types of Eisenstein series associated to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper S normal upper L left-parenthesis 3 comma bold upper Z right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">S</mml:mi> <mml:mi mathvariant="normal">L</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Z</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {SL}(3, \mathbf {Z})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This paper deals with those which are built out of cuspidal Maass waveforms for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper S normal upper L left-parenthesis 2 comma bold upper Z right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">S</mml:mi> <mml:mi mathvariant="normal">L</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Z</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {SL}(2, \mathbf {Z})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We compute the inner product of two of them over a truncated fundamental region and then compute the rate of divergence as the truncation parameter tends to infinity. The solution of this problem is of use in computing the details of the trace formula for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper S normal upper L left-parenthesis 3 comma bold upper Z right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">S</mml:mi> <mml:mi mathvariant="normal">L</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Z</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {SL}(3, \mathbf {Z})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Terms in the Selberg trace formula for ๐‘†๐ฟ(3,๐’ต)\๐’ฎโ„’(3,โ„›)/๐’ฎ๐’ช(3,โ„›) associated to Eisenstein series coming from a minimal parabolic subgroup 1991 Dorothy Wallace
+ PDF Chat The Selberg trace formula for ๐‘†๐ฟ(3,๐‘)\๐‘†๐ฟ(3,๐‘…)/๐‘†๐‘‚(3,๐‘…) 1994 Dorothy Wallace
+ PDF Chat Contributions from conjugacy classes of regular elliptic elements in ๐‘†๐‘(๐‘›,๐‘) to the dimension formula 1984 Min King Eie
+ Cuspidal integrals for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml1" display="inline" overflow="scroll" altimg="si1.gif"><mml:mi mathvariant="normal">SL</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>3</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mo>โˆ•</mml:mo><mml:msub><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mi>ฯต</mml:mi></mml:mrow></mml:msub></mml:math> 2018 Mogens Flenstedโ€“Jensen
Job J. Kuit
+ PDF Chat On a Rankin-Selberg <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>L</mml:mi></mml:mrow></mml:math>-Function over Different Fields 2014 Tim Gillespie
+ The degenerate Eisenstein series attached to the Heisenberg parabolic subgroups of quasi-split forms of ๐‘†๐‘๐‘–๐‘›โ‚ˆ 2017 Avner Segal
+ Cusp forms for reductive symmetric spaces of split rank one 2017 Erik P. van den Ban
Job J. Kuit
+ PDF Chat Spectral multiplicity for ๐บ๐‘™_{๐‘›}(๐‘…) 1992 J. M. Huntley
+ PDF Chat The cusp forms of weight 3 on ฮ“โ‚‚(2,4,8) 1993 Bert van Geemen
Duco van Straten
+ PDF Chat Square integrable representations and a Plancherel theorem for parabolic subgroups 1978 Frederick W. Keene
+ Terms in the Selberg Trace Formula for SL(3, L)\SL(3, R)/SO(3, R) Associated to Eisenstein Series Coming from a Minimal Parabolic Subgroup 1991 D. I. Wallace
+ On a correspondence between cuspidal representations of ๐บ๐ฟ_{2๐‘›} and ๐‘†๐‘ฬƒ_{2๐‘›} 1999 David Ginzburg
Stephen Rallis
David Soudry
+ A multivariate integral representation on ๐บ๐ฟโ‚‚ร—๐บ๐‘†๐‘โ‚„ inspired by the pullback formula 2017 Aaron Pollack
Shrenik Shah
+ Non-existence of Siegel zeros for cuspidal functorial products on ๐บ๐ฟ(2)ร—๐บ๐ฟ(3) 2022 Wenzhi Luo
+ PDF Chat Strong multiplicity theorems for ๐บ๐ฟ(๐‘›) 1987 George T. Gilbert
+ Resonance sums for Rankinโ€“Selberg products of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi mathvariant="italic">SL</mml:mi></mml:mrow><mml:mrow><mml:mi>m</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> Maass cusp forms 2016 Kyle Czarnecki
+ Maximal parabolic terms in the Selberg trace formula for SL(3, Z)โงนSL(3, R)/SO(3, R) 1988 Dorothy Wallace
+ PDF Chat The trace of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e20" altimg="si2.svg"><mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math> takes no repeated values 2022 Liubomir Chiriac
Andrei Jorza
+ Modular units from quotients of Rogers-Ramanujan type ๐‘ž-series 2016 Hannah Larson
+ On signs of Fourier coefficients of Hecke-Maass cusp forms on ๐บ๐ฟโ‚ƒ 2023 Jesse Jรครคsaari