Haar Measure and the Artin Conductor

Type: Article

Publication Date: 1999-01-01

Citations: 33

DOI: https://doi.org/10.1090/s0002-9947-99-02095-4

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a connected reductive group, defined over a local, non-archimedean field <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G left-parenthesis k right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">G(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is locally compact and unimodular. In <italic>On the motive of a reductive group</italic>, Invent. Math. <bold>130</bold> (1997), by B. H. Gross, a Haar measure <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue omega Subscript upper G Baseline EndAbsoluteValue"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>ω</mml:mi> <mml:mi>G</mml:mi> </mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">|\omega _G|</mml:annotation> </mml:semantics> </mml:math> </inline-formula> was defined on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G left-parenthesis k right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">G(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, using the theory of Bruhat and Tits. In this note, we give another construction of the measure <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue omega Subscript upper G Baseline EndAbsoluteValue"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>ω</mml:mi> <mml:mi>G</mml:mi> </mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">|\omega _G|</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, using the Artin conductor of the motive <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding="application/x-tex">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The equivalence of the two constructions is deduced from a result of G. Prasad.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The Haar measure on a compact quantum group 1995 Alfons Van Daele
+ PDF Chat Harish-Chandra’s Plancherel theorem for 𝔭-adic groups 1996 Allan J. Silberger
+ Groupe de Picard et groupe de Brauer des compactifications lisses d’espaces homogènes 2006 Jean-Louis Colliot-Thélène
Boris Kunyavskiı̆
+ THE HAAR MEASURE ON LOCALLY COMPACT GROUPS 1978 Konrad Jacobs
+ PDF Chat The equivariant Hurewicz map 1992 L Lewis
+ PDF Chat 𝐾-invariant Kaehler structures on 𝐾_{𝐂}/𝐍 and the associated line bundles 1996 Meng-Kiat Chuah
+ A geometric formula for multiplicities of 𝐾-types of tempered representations 2019 Peter Hochs
Yanli Song
Shilin Yu
+ Twisted Lefschetz number formula and 𝑝-adic trace formula 2018 Zhengyu Xiang
+ Compact groups and Haar measures 1983 Alain Robert
+ PDF Chat On the cohomology of 𝑝-adic analytic spaces, I: The basic comparison theorem 2024 Pierre Colmez
Wiesława Nizioł
+ PDF Chat Unipotent character sheaves and strata of a reductive group 2023 G. Lusztig
+ PDF Chat Dimension theory 1973 Abraham Zaks
+ Locally compact groups and Haar measure 1976 Roger H. Farrell
+ Constant term of Eisenstein integrals on a reductive 𝑝-adic symmetric space 2014 Jacques Carmona
Patrick Delorme
+ Harmonic and invariant measures on foliated spaces 2015 Chris Connell
Matilde Martínez
+ PDF Chat On the homotopy groups of 𝐴(𝑋) 1986 Stanisław Betley
+ The Bernstein center in terms of invariant locally integrable functions 2002 Allen Moy
Marko Tadić
+ Types in reductive 𝑝-adic groups: The Hecke algebra of a cover 2000 Colin J. Bushnell
Philip Kutzko
+ A Pieri-Chevalley formula in the K-theory of a 𝐺/𝐵-bundle 1999 Harsh Pittie
Arun Ram
+ Haar measure on locally compact groups 2014 Joe Diestel
Angela Spalsbury