Global Quantization of Pseudo-Differential Operators on Compact Lie Groups, SU(2), 3-sphere, and Homogeneous Spaces

Type: Article

Publication Date: 2012-04-17

Citations: 117

DOI: https://doi.org/10.1093/imrn/rns122

Abstract

Global quantization of pseudo-differential operators on general compact Lie groups G is introduced relying on the representation theory of the group rather than on expressions in local coordinates. A new class of globally defined symbols is introduced and related to the usual Hörmander's classes of operators Ψm(G). Properties of the new class and symbolic calculus are analyzed. Properties of symbols as well as L2-boundedness and Sobolev L2-boundedness of operators in this global quantization are established on general compact Lie groups. Operators on the three-dimensional sphere and on group SU(2) are analyzed in detail. An application is given to pseudo-differential operators on homogeneous spaces K\G. In particular, using the obtained global characterization of pseudo-differential operators on Lie groups, it is shown that every pseudo-differential operator in Ψm(K\G) can be lifted to a pseudo-differential operator in Ψm(G), extending the known results on invariant partial differential operators.

Locations

  • International Mathematics Research Notices - View
  • arXiv (Cornell University) - View - PDF
  • Ghent University Academic Bibliography (Ghent University) - View - PDF
  • Ghent University Academic Bibliography (Ghent University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Pseudodifferential calculus on a compact Lie group 2014 Vèronique Fischer
+ Pseudo-differential Operators on Homogeneous Spaces 2013 Donal Michael Connolly
+ Intrinsic pseudo-differential calculi on any compact Lie group 2015 Véronique Fischer
+ Subelliptic pseudo-differential operators and Fourier integral operators on compact Lie groups 2020 Duván Cardona
Michael Ruzhansky
+ Intrinsic pseudodifferential calculi on any compact Lie group 2014 Vèronique Fischer
+ Quantizations on the Engel and the Cartan groups 2020 Marianna Chatzakou
+ PDF Chat Pseudo-differential operators on Homogeneous vector bundles over compact homogeneous manifolds 2024 Duván Cardona
Vishvesh Kumar
Michael Ruzhansky
+ Quantizations on the Engel and the Cartan groups 2020 Marianna Chatzakou
+ $L^p$-bounds for pseudo-differential operators on graded Lie groups. 2019 Duván Cardona
Julio Delgado
Michael Ruzhansky
+ Subelliptic pseudo-differential operators and Fourier integral operators on compact Lie groups 2020 Duván Cardona
Michael Ruzhansky
+ PDF Chat Local and global symbols on compact Lie groups 2019 Véronique Fischer
+ Global pseudo-differential operators on the Lie group $G= (-1,1)^n$ 2022 Duván Cardona
Roland Duduchava
Arne Hendrickx
Michael Ruzhansky
+ Global symbolic calculus of pseudo-differential operators on homogeneous vector bundles 2019 Mitsuru Wilson
+ Pseudo-Differential Operators: Groups, Geometry and Applications 2017 M. W. Wong
Hongmei Zhu
+ PDF Chat Hörmander Class of Pseudo-Differential Operators on Compact Lie Groups and Global Hypoellipticity 2014 Michael Ruzhansky
Ville Turunen
Jens Wirth
+ On pseudo-differential operators on group SU(2) 2008 Michael Ruzhansky
Ville Turunen
+ $L^p$-$L^q$ boundedness of pseudo-differential operators on graded Lie groups 2023 Duván Cardona
Vishvesh Kumar
Michael Ruzhansky
+ Schatten Class and nuclear pseudo-differential operators on homogeneous spaces of compact groups 2019 Vishvesh Kumar
Shyam Swarup Mondal
+ Schatten Class and nuclear pseudo-differential operators on homogeneous spaces of compact groups 2019 Vishvesh Kumar
Shyam Swarup Mondal
+ $L^p$-bounds for pseudo-differential operators on graded Lie groups 2019 Duván Cardona
Julio Delgado
Michael Ruzhansky

Works That Cite This (117)

Action Title Year Authors
+ PDF Chat Global analytic hypoellipticity for a class of evolution operators on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">T</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">S</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math> 2021 Alexandre Kirilov
Ricardo Paleari
Wagner Augusto Almeida de Moraes
+ Hausdorff–Young inequality for Orlicz spaces on compact homogeneous manifolds 2020 Vishvesh Kumar
Michael Ruzhansky
+ Hardy-Littlewood, Hausdorff-Young-Paley inequalities, and L-L Fourier multipliers on compact homogeneous manifolds 2019 Rauan Akylzhanov
Michael Ruzhansky
Erlan Nursultanov
+ Global hypoellipticity and global solvability for vector fields on compact Lie groups 2020 Alexandre Kirilov
Wagner Augusto Almeida de Moraes
Michael Ruzhansky
+ PDF Chat Lower bounds for operators on graded Lie groups 2013 Véronique Fischer
Michael Ruzhansky
+ Partial Fourier series on compact Lie groups 2020 Alexandre Kirilov
Wagner Augusto Almeida de Moraes
Michael Ruzhansky
+ Difference equations and pseudo-differential operators on<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math> 2020 Linda N. A. Botchway
P. Gaël Kibiti
Michael Ruzhansky
+ PDF Chat Smooth Dense Subalgebras and Fourier Multipliers on Compact Quantum Groups 2018 Rauan Akylzhanov
Shahn Majid
Michael Ruzhansky
+ Hardy-Littlewood, Hausdorff-Young-Paley inequalities, and Lp-Lq Fourier multipliers on compact homogeneous manifolds 2015 Rauan Akylzhanov
Erlan Nursultanov
Michael Ruzhansky
+ PDF Chat Hörmander Class of Pseudo-Differential Operators on Compact Lie Groups and Global Hypoellipticity 2014 Michael Ruzhansky
Ville Turunen
Jens Wirth