Approximate computation of integrals for functions in $ W_p^\alpha \lbrack 0,1 \rbrack ^n$

Type: Article

Publication Date: 2000-12-31

Citations: 5

DOI: https://doi.org/10.1070/rm2000v055n06abeh000351

Locations

  • Russian Mathematical Surveys - View

Similar Works

Action Title Year Authors
+ Approximate Calculation of Integrals. 1965 E. K. Blum
V. I. Krylov
A. H. Stoud
+ Approximate Calculation of Integrals 1969 I. P. Mysovskih
+ Approximate Calculation of Integrals 1964 Seymour Haber
V. I. Krylov
+ Approximation of Integrals 2013 Peter D. Lax
Maria Shea Terrell
+ Approximate methods of calculating integrals containing a two-centered distribution |?a??b> 1968 A. P. Klyagina
Н. М. КлимСнко
M. E. Dyatkina
+ Approximate Calculation of Multiple Integrals 1973 W. G.
A. H. Stroud
+ Efficient computation of highly oscillatory finite-part integrals 2025 Zhenhua Xu
Guidong Liu
+ PDF Chat Approximation by integrals of 𝑒^{-π‘₯Β²} 2009 William Adams
+ Numerical Evaluation of Integrals with weight function 2015 Iosr Journals
K. T. Shivaram
G Manjula.
Umesha
H. T. Prakasha
+ Numerical Evaluation of Integrals with weight function 2015 Iosr Journals
Shivaram. K. T
G Manjula.
Umesha
Prakasha. H.T
+ The integrals $$\mathfrak{A}_p (x) = (p!)^{ - 1} \mathop \smallint \limits_0^\infty \varepsilon ^p (\varepsilon + x)^{ - 1} e^{ - 6} d\varepsilon $$ and $$\mathfrak{B}_p (x) = (p!)^{ - 1} \mathop \smallint \limits_0^\infty \varepsilon ^p (\varepsilon + x)^{ - 2} e^{ - 6} d\varepsilon $$ and their tabulationand their tabulation 1957 R. Dingle
Doreen Arndt
Sunanda Roy
+ Formulas for the approximate evaluation of integrals over a whole plane 1990 А. К. ΠŸΠΎΠ½ΠΎΠΌΠ°Ρ€Π΅Π½ΠΊΠΎ
+ The integrals $$\mathfrak{E}_p (x) = (p!)^{ - 1} \mathop \smallint \limits_0^\infty \varepsilon ^p (\varepsilon + x\varepsilon ^3 )^{ - 1} e^{ - \varepsilon } d\varepsilon $$ and $$\mathfrak{F}_p (x) = (p!)^{ - 1} \mathop \smallint \limits_0^\infty \varepsilon ^p (\varepsilon + x\varepsilon ^3 )^{ - 2} e^{ - \varepsilon } d\varepsilon $$ and their tabulationand their tabulation 1957 R. Dingle
Doreen Arndt
Sunanda Roy
+ The integrals $$\mathfrak{C}_p (x) = (p!)^{ - 1} \mathop \smallint \limits_0^\infty \varepsilon ^p (\varepsilon ^2 + x^2 )^{ - 1} e^{ - 6} d\varepsilon $$ and $$\mathfrak{D}_p (x) = (p!)^{ - 1} \mathop \smallint \limits_0^\infty \varepsilon ^p (\varepsilon ^2 + x^2 )^{ - 2} e^{ - 6} d\varepsilon $$ and their tabulationand their tabulation 1957 R. Dingle
Doreen Arndt
Sunanda Roy
+ Approximation of Integrals 2005 Thomas A. Severini
+ The approximation of low-dimensional integrals: available tools and trends 1997 Ronald Cools
+ Numerical Evaluation of Integrals of Analytic Functions 2014 Biswajeet Acharya
M. Acharya
S. B. Sahoo
+ Approximation of Integrals 2005
+ Approximation techniques for single integrals and multiple integrals : [an honors thesis (HONRS 499)] 1986 Clarence A. Brooks
+ An efficient approximation to oscillatory integrals 2014 Daan Huybrechs
Nele Lejon