A NOTE ON EXTENSIONS OF PRINCIPALLY QUASI-BAER RINGS

Type: Article

Publication Date: 2008-10-01

Citations: 22

DOI: https://doi.org/10.11650/twjm/1500405082

Abstract

Let $R$ be a ring with unity. It is shown that the formal power series ring $R[[x]]$ is right p.q.-Baer if and only if $R$ is right p.q.-Baer and every countable subset of right semicentral idempotents has a generalized countable join.

Locations

  • Taiwanese Journal of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ A NOTE ON PRINCIPALLY QUASI-BAER RINGS 2002 Zhongkui Liu
+ Skew power series extensions of principally quasi-Baer rings 2008 Ebrahim Hashemı
A. Moussavi
Alireza Nasr-Isfahani
+ Principally Quasi-Baer Skew Power Series Rings 2010 R. Manaviyat
A. Moussavi
Mohammad Habibi
+ On Polynomial Extensions of Principally Quasi-Baer Ring 2000 Gary F. Birkenmeier
김진용
박재철
+ PDF Chat Principal Quasi-Baerness of Modules of Generalized Power Series 2011 Renyu Zhao
Yu-Juan Jiao
+ Polynomial extensions of modules with the quasi-Baer property 2019 P. Amirzadeh Dana
A. Moussavi
+ Ore Extensions of Quasi-Baer Rings 2009 Chan Yong Hong
Nam Kyun Kim
Yang Lee
+ On principally quasi-Baer skew power series rings 2015 A. Moussavi
+ Principal Quasi-Baerness of Rings of Generalized Power Series 2007 Zhongkui Liu
+ Principal Quasi-Baerness of Skew Power Series Rings 2005 Weili Fan
+ Ore extensions of principally quasi-Baer rings 2007 Mohamed Louzari
L'moufadal Ben Yakoub
+ A note on polynomial extensions of quasi-Baer rings 2011 Xiaolin Wang
+ Principally Quasi-Baer Skew Power Series Modules 2013 R. Manaviyat
A. Moussavi
Mohammad Habibi
+ PDF Chat Baer rings of generalized power series Research supported by the NSF of China (10171082) and by the Foundation for University Key Teachers of the Ministry of Education. 2002 Zhongkui Liu
+ Principally Quasi-Baer skew Generalized Power Series modules 2013 Ali Majidinya
A. Moussavi
+ ON ORE EXTENSIONS OF QUASI-BAER RINGS 2008 Alireza Nasr-Isfahani
A. Moussavi
+ PDF Chat ON PRINCIPALLY QUASI-BAER MODULES 2011 Burcu Üngör
Nazım Agayev
Sait Halıcıoğlu
Abdullah Harmancı
+ PDF Chat SKEW POLYNOMIAL RINGS OVER σ-QUASI-BAER AND σ-PRINCIPALLY QUASI-BAER RINGS 2005 Juncheol Han
+ A note on generalizations of quasi-Frobenius rings 2016 Le Duc Thoang
+ PDF Chat Polynomial extensions of generalized quasi-Baer rings 2010 Sh. Ghalandarzadeh
H. S. Javadi
Mehdi Khoramdel