Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods

Type: Article

Publication Date: 2004-12-01

Citations: 280

DOI: https://doi.org/10.1002/gamm.201490007

Abstract

Abstract We discuss the state of the art in numerical solution methods for large scale polynomial or rational eigenvalue problems. We present the currently available solution methods such as the Jacobi‐Davidson, Arnoldi or the rational Krylov method and analyze their properties. We briefly introduce a new linearization technique and demonstrate how it can be used to improve structure preservation and with this the accuracy and efficiency of linearization based methods. We present several recent applications where structured and unstructured nonlinear eigenvalue problems arise and some numerical results. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Locations

  • GAMM-Mitteilungen - View
  • Open Access Repository Technischen Universität Hamburg (Technischen Universität Hamburg) - View - PDF

Similar Works

Action Title Year Authors
+ Rational Krylov Methods for Nonlinear Eigenvalue Problems 2013 Roel Van Beeumen
+ Numerical methods for sparse nonlinear eigenvalue problems 2004 Heinrich Voß
+ Projection methods for nonlinear sparse eigenvalue problems 2006 Heinrich Voß
+ PDF Chat Compact Rational Krylov Methods for Nonlinear Eigenvalue Problems 2015 Roel Van Beeumen
Karl Meerbergen
Wim Michiels
+ A compact rational Krylov method for large-scale rational eigenvalue problems 2017 Froilán M. Dopico
Javier González‐Pizarro
+ A compact rational Krylov method for large-scale rational eigenvalue problems 2017 Froilán M. Dopico
Javier González‐Pizarro
+ NLEIGS: A Class of Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems 2014 Stefan Güttel
Roel Van Beeumen
Karl Meerbergen
Wim Michiels
+ Iterative Projection Methods for Large-Scale Nonlinear Eigenvalue Problems 2010 Heinrich Voß
+ PDF Chat A compact rational Krylov method for large‐scale rational eigenvalue problems 2018 Froilán M. Dopico
Javier González‐Pizarro
+ Solving Rational Eigenvalue Problems via Linearization 2011 Yangfeng Su
Zhaojun Bai
+ A rational Krylov method for a class of non-linear eigenvalue problems 2012 Karl Meerbergen
+ PDF Chat A Rational Krylov Method Based on Hermite Interpolation for Nonlinear Eigenvalue Problems 2013 Roel Van Beeumen
Karl Meerbergen
Wim Michiels
+ A practical rational Krylov algorithm for solving large-scale nonlinear eigenvalue problems 2013 Roel Van Beeumen
Karl Meerbergen
Wim Michiels
+ PDF Chat Harmonic and refined Rayleigh–Ritz for the polynomial eigenvalue problem 2007 Michiel E. Hochstenbach
Gérard L. G. Sleijpen
+ Rational Krylov methods for solving nonlinear eigenvalue problems 2015 Roel Van Beeumen
Karl Meerbergen
Wim Michiels
+ PDF Chat Compact Two-Sided Krylov Methods for Nonlinear Eigenvalue Problems 2018 Pieter Lietaert
Karl Meerbergen
Françoise Tisseur
+ Rational Krylov decompositions : theory and applications 2017 Mario Berljafa
+ A Newton rational Krylov method for solving nonlinear eigenvalue problems 2013 Roel Van Beeumen
+ Rational Krylov for Large Nonlinear Eigenproblems 2006 Axel Ruhe
+ A rational Krylov method based on Newton and/or Hermite interpolation for the nonlinear eigenvalue problem 2012 Roel Van Beeumen
Karl Meerbergen
Wim Michiels