The convergence of the Bochner-Riesz means at the critical index

Type: Article

Publication Date: 1996-01-01

Citations: 11

DOI: https://doi.org/10.1090/s0002-9939-96-03333-3

Abstract

In this paper, we study the pointwise convergence of the Bochner-Riesz means at the critical index on the space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L log Superscript plus Baseline upper L left-parenthesis upper Q Subscript n Baseline right-parenthesis period"> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:msup> <mml:mi>log</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:mo>⁡</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mi>Q</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy="false">)</mml:mo> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">L\log ^+ L (Q_n).</mml:annotation> </mml:semantics> </mml:math> </inline-formula> We weaken the hypothesis, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-turned-comma-quotation-mark x"> <mml:semantics> <mml:mrow> <mml:mo>“</mml:mo> <mml:mi>x</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">“ x</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a Lebesgue point", which is required on some research results by instead considering the convergence of averages of the function over balls when the radials of the balls approach to 0.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On almost everywhere convergence of Bochner-Riesz means in higher dimensions 1985 Michael Christ
+ Approximation Properties of Bochner-Riesz Means Below the Critical Index 1993 Shi Wang
+ Approximation Properties of Bochner-Riesz Means Below the Critical Index 1993 王时铭
+ Bochner–Riesz means at the critical index: weighted and sparse bounds 2024 David Beltrán
Joris Roos
Andreas Seeger
+ PDF Chat A note on the “hyperbolic” Bochner-Riesz means 1984 Anthony Carbery
+ Convergence and Summability Factors for Riesz Means 1962 I. J. Maddox
+ Approximation of Bochner-Riesz means of conjugate Fourier integrals below the critical index 1994 Shiming Wang
+ Riesz means of Fourier series and integrals: Strong summability at the critical index 2019 Jongchon Kim
Andreas Seeger
+ On the maximal Bochner-Riesz conjecture in the plane for 𝑝&lt;2 2002 Terence Tao
+ Generalized Bochner-Riesz means on spaces generated by smooth blocks 2003 Wang Jin-cai
+ Strong mean approximation on HP(Tn) for the Riesz means at the critical index 1990 Heping Liu
Liu Zhi-xin
Shanzhen Lu
+ Bochner-Riesz means with respect to a rough distance function 2006 Paul B. Taylor
+ Almost everywhere convergence of Bochner–Riesz means with critical index for Dunkl transforms 2015 Chang‐Feng Dai
Wenrui Ye
+ On the Connection Between the Limits of Oscillation of a Sequence and its Cesàro and Riesz Means 1933 M. Fekete
C. E. Winn
+ PDF Chat Mean convergence in 𝐿^{𝑝} spaces 1972 W. P. Novinger
+ The $$\boldsymbol{\lambda}$$-Statistical Convergence in Riesz Spaces 2021 Abdullah Aydın
Muhammed Çınar
Mikâil Et
+ PDF Chat Almost everywhere convergence for modified Bochner–Riesz means at the critical index for p ≥ 2 2017 Marco Annoni
+ PDF Chat Weak type estimates for Bochner-Riesz spherical summation multipliers 1986 Sagun Chanillo
Benjamin Muckenhoupt
+ Strong approximation of Riesz means at critical index on Hp(T) (0&lt;p≤1) 1989 Guoliang Chen
Yinsheng Jiang
Shanzhen Lu
+ Almost everywhere convergence for modified Bochner Riesz means at the critical index for [rho] [greater than or equal to] 2 2010 Marco Annoni