Type: Article
Publication Date: 1996-01-01
Citations: 11
DOI: https://doi.org/10.1090/s0002-9939-96-03333-3
In this paper, we study the pointwise convergence of the Bochner-Riesz means at the critical index on the space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L log Superscript plus Baseline upper L left-parenthesis upper Q Subscript n Baseline right-parenthesis period"> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:msup> <mml:mi>log</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:mo></mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mi>Q</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy="false">)</mml:mo> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">L\log ^+ L (Q_n).</mml:annotation> </mml:semantics> </mml:math> </inline-formula> We weaken the hypothesis, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-turned-comma-quotation-mark x"> <mml:semantics> <mml:mrow> <mml:mo>“</mml:mo> <mml:mi>x</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">“ x</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a Lebesgue point", which is required on some research results by instead considering the convergence of averages of the function over balls when the radials of the balls approach to 0.