Characterizations of contraction 𝐢-semigroups

Type: Article

Publication Date: 1998-01-01

Citations: 6

DOI: https://doi.org/10.1090/s0002-9939-98-04243-9

Abstract

A <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C"> <mml:semantics> <mml:mi>C</mml:mi> <mml:annotation encoding="application/x-tex">C</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-semigroup <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-brace upper T left-parenthesis t right-parenthesis right-brace Subscript t greater-than-or-equal-to 0"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:msub> <mml:mo fence="false" stretchy="false">}</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>t</mml:mi> <mml:mo>β‰₯</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">\{T(t)\}_{t\ge 0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is of contractions if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-vertical-bar upper T left-parenthesis t right-parenthesis x double-vertical-bar less-than-or-equal-to double-vertical-bar upper C x double-vertical-bar"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">β€–</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mi>x</mml:mi> <mml:mo fence="false" stretchy="false">β€–</mml:mo> <mml:mo>≀</mml:mo> <mml:mo fence="false" stretchy="false">β€–</mml:mo> <mml:mi>C</mml:mi> <mml:mi>x</mml:mi> <mml:mo fence="false" stretchy="false">β€–</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\|T(t)x\|\le \|Cx\|</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="t greater-than-or-equal-to 0"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>β‰₯</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">t\ge 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x element-of upper X"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>X</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">x\in X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Using the Hille-Yosida space, we completely characterize the generators of contraction <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C"> <mml:semantics> <mml:mi>C</mml:mi> <mml:annotation encoding="application/x-tex">C</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-semigroups. We also give the Lumer-Phillips theorem for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C"> <mml:semantics> <mml:mi>C</mml:mi> <mml:annotation encoding="application/x-tex">C</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-semigroups in several special cases.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Properties of subgenerators of 𝐢-regularized semigroups 1998 Sheng Wang
+ PDF Chat Coisometric extensions of contraction semigroups 1986 WacΕ‚aw SzymaΕ„ski
+ Semigroup 𝐢*-algebras of π‘Žπ‘₯+𝑏-semigroups 2015 Xin Li
+ PDF Chat On the spectrum of 𝐢₀-semigroups 1984 Jan Prüß
+ PDF Chat Semigroups of multipliers associated with semigroups of operators 1975 A. Olubummo
+ PDF Chat Continuous spatial semigroups of *-endomorphisms of 𝔅(β„Œ) 1990 Robert T. Powers
Geoffrey L. Price
+ PDF Chat Structure of the semigroup of semigroup extensions 1971 Ronald O. Fulp
J. W. Stepp
+ PDF Chat A note on generators of semigroups 1977 Sze Kai Tsui
+ PDF Chat A strong contractivity property for semigroups generated by differential operators 1988 Robert M. Kauffman
+ PDF Chat On the relation between the semigroup and its infinitesimal generator 1987 Frank Neubrander
+ PDF Chat Semigroup compactifications of semidirect products 1981 Hugo D. Junghenn
Bao-Ting Lerner
+ PDF Chat Semidirect products of regular semigroups 1997 Peter R. Jones
Peter Trotter
+ PDF Chat On semigroups generated by π‘š-accretive operators in a strict sense 1986 Michiaki Watanabe
+ PDF Chat Contractions with the bicommutant property 1985 Katsutoshi Takahashi
+ PDF Chat Regularizing properties of nonlinear semigroups 1987 Semion Gutman
+ PDF Chat An extension theorem for functions on semigroups 1976 Paul Milnes
+ PDF Chat Contractification of a semigroup of maps 1979 Hwei Mei Ko
Kok Keong Tan
+ PDF Chat Free 𝐸-π‘š groups and free 𝐸-π‘š semigroups 1982 Takayuki Tamura
+ PDF Chat On the product of class 𝐴-semigroups of linear operators 1983 Nazar H. Abdelaziz
+ PDF Chat The uniform continuity of certain translation semigroups 1978 Jimmie Lee Johnson