Coarse Alexander duality and duality groups

Type: Article

Publication Date: 2005-02-01

Citations: 45

DOI: https://doi.org/10.4310/jdg/1121449108

Abstract

We study discrete group actions on coarse Poincaré duality spaces, e.g., acyclic simplicial complexes which admit free cocompact group actions by Poincaré duality groups. When G is an (n−1) dimensional duality group and X is a coarse Poincaré duality space of formal dimension n, then a free simplicial action G ↷ X determines a collection of “peripheral” subgroups H1, … Hk ⊂ G so that the group pair (G, {H1,…Hk }) is an n-dimensional Poincaré duality pair. In particular, if G is a 2-dimensional 1-ended group of type FP2, and G ↷ X is a free simplicial action on a coarse PD(3) space X, then G contains surface subgroups; if in addition X is simply connected, then we obtain a partial generalization of the Scott/Shalen compact core theorem to the setting of coarse PD(3) spaces. In the process, we develop coarse topological language and a formulation of coarse Alexander duality which is suitable for applications involving quasi-isometries and geometric group theory.

Locations

  • Journal of Differential Geometry - View - PDF
  • arXiv (Cornell University) - View
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ Coarse Alexander duality and duality groups 1999 Michael Kapovich
Bruce Kleiner
+ Coarse Alexander duality for pairs and applications 2020 G. Christopher Hruska
Emily Stark
Hung Cong Tran
+ Coarse Alexander duality for pairs and applications 2020 G. Christopher Hruska
Emily Stark
Hung Cong Tran
+ PDF Chat Coarse homotopy groups 2020 Paul D. Mitchener
Behnam Norouzizadeh
Thomas Schick
+ Coarse structures and group actions 2006 N. Brodskiy
Jerzy Dydak
A. Mitra
+ PDF Chat Quasi-isometry invariance of group splittings over coarse Poincaré duality groups 2018 Alexander Margolis
+ Quasi-actions on trees II: Finite depth Bass-Serre trees 2004 Lee Mosher
Michah Sageev
Kevin Whyte
+ Dynamic characterizations of quasi-isometry, and applications to cohomology 2016 Xin Li
+ Quasi-actions on trees II: Finite depth Bass-Serre trees 2011 Lee Mosher
Michah Sageev
Kevin Whyte
+ An Invitation to Coarse Groups 2022 Arielle Leitner
Federico Vigolo
+ PDF Chat Coarse homological invariants of metric spaces 2024 Alexander Margolis
+ PDF Chat Dynamic characterizations of quasi-isometry and applications to cohomology 2018 Xin Li
+ Equivariant Coarse (Co-)Homology Theories 2020 Christopher Wulff
+ PDF Chat Equivariant Coarse (Co-)Homology Theories 2022 Christopher Wulff
+ Coarse structures on groups defined by conjugations 2020 Ігор Протасов
Ksenia Protasova
+ Coarse Groups 2023 Arielle Leitner
Federico Vigolo
+ Coarse Actions 2023 Arielle Leitner
Federico Vigolo
+ Coarse structures on groups defined by conjugations 2020 Ігор Протасов
Ksenia Protasova
+ Hochschild and cyclic homology for bornological coarse spaces 2019 Luigi Caputi
+ PDF Chat Coarse structures on groups defined by conjugations 2021 Ігор Протасов
Ksenia Protasova