A geodesic completeness theorem for locally symmetric Lorentz

Type: Article

Publication Date: 1988-01-01

Citations: 1

Similar Works

Action Title Year Authors
+ A geodesic completeness theorem for locally symmetric Lorentz manifolds 1988 Javier Lafuente López
+ PDF Chat A geodesic completenss theorem for locatly symmetric Lorentz manifolds 1988 Javier Lafuente López
+ Complete space-like hypersurfaces in locally symmetric Lorentz spaces 2003 Jin Ok Baek
Qing-Ming Cheng
Young Jin Suh
+ PDF Chat Complete Einstein Metrics are Geodesically Rigid 2009 V. Kiosak
Vladimir S. Matveev
+ Complete space-like hypersurfaces in a Lorentz manifold 1999 Soon Meen Choi
Seon Mi Lyu
Young Jin Suh
+ Rigidity theorems for complete spacelike hypersurfaces with constant scalar curvature in locally symmetric Lorentz spaces 2009 Shicheng Zhang
WU Bao-qiang
+ PDF Chat Completeness of Lorentz manifolds of constant curvature admitting Killing vector fields 1993 Yoshinobu Kamishima
+ A survey on sufficient conditions for geodesic completeness of nondegenerate hypersurfaces in Lorentzian geometry 2016 Fazilet Erkekog̃lu
+ PDF Chat Lorentzian Manifolds of Nonpositive Curvature. II 1975 F. J. Flaherty
+ PDF Chat The geodesic completeness of compact Lorentzian manifolds admitting a timelike killing vector field revisited: Two new proofs 2018 la de
+ Geodesics and complete Riemannian manifolds 2001 Richard Bishop
Richard Crittenden
+ Homogeneous Lorentzian Spaces Whose Null-geodesics are Canonically Homogeneous 2006 Patrick Meessen
+ On the fundamental group of a complete globally hyperbolic Lorentzian manifold with a lower bound for the curvature tensor 2014 Jun-ichi Mukuno
+ On the fundamental group of a complete globally hyperbolic Lorentzian manifold with a lower bound for the curvature tensor 2014 Jun-ichi Mukuno
+ PDF Chat On the fundamental group of a complete globally hyperbolic Lorentzian manifold with a lower bound for the curvature tensor 2015 Jun-ichi Mukuno
+ Rigidity theorem for complete spacelike hypersurfaces with constant scalar curvature in Lorentz spaces 2011 Shicheng Zhang
+ PDF Chat Completeness of certain compact Lorentzian locally symmetric spaces 2023 Thomas Leistner
Thomas Jack Munn
+ A new geometry of a Lorentzian manifold 1998 Dan I. Papuc
+ PDF Chat On the geodesic connectedeness of Lorentzian manifolds 1994 Vieri Benci
Donato Fortunato
Antonio Masiello
+ Lorentzian Manifolds having the Killing Property 2012 Adela Mihai

Works Cited by This (0)

Action Title Year Authors