Asymptotically sharp dimension estimates for $k$-porous sets

Type: Article

Publication Date: 2005-12-01

Citations: 14

DOI: https://doi.org/10.7146/math.scand.a-14978

Abstract

In ${\mathsf R}^n$, we establish an asymptotically sharp upper bound for the upper Minkowski dimension of $k$-porous sets having holes of certain size near every point in $k$ orthogonal directions at all small scales. This bound tends to $n-k$ as $k$-porosity tends to its maximum value.

Locations

  • MATHEMATICA SCANDINAVICA - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Asymptotically sharp dimension estimates for $k$-porous sets 2017 Esa Järvenpää
Maarit Järvenpää
Antti Käenmäki
Ville Suomala
+ Asymptotically sharp dimension estimates for $k$-porous sets 2017 Esa Järvenpää
Maarit Järvenpää
Antti Käenmäki
Ville Suomala
+ PDF Chat Porous measures on $\mathbb {R}^{n}$: Local structure and dimensional properties 2001 Esa Järvenpää
Maarit Järvenpää
+ Dimension estimates for the boundary of planar Sobolev extension domains 2020 Danka Lučić
Tapio Rajala
Jyrki Takanen
+ Dimension estimates for the boundary of planar Sobolev extension domains 2020 Danka Lučić
Tapio Rajala
Jyrki Takanen
+ Dimensions and Porosities 2010 Esa Järvenpää
+ PDF Chat Packing dimension and Ahlfors regularity of porous sets in metric spaces 2009 Esa Järvenpää
Maarit Järvenpää
Antti Käenmäki
Tapio Rajala
Sari Rogovin
Ville Suomala
+ Generalized dimension estimates for images of porous sets under monotone Sobolev mappings 2014 Pekka Koskela
Aleksandra Zapadinskaya
+ PDF Chat Extremal geometry of a Brownian porous medium 2013 Jesse Goodman
Frank den Hollander
+ LARGE POROSITY AND DIMENSION OF SETS IN METRIC SPACES 2009 Tapio Rajala
+ Quantitative Estimates on the Singular Sets of Alexandrov Spaces 2019 Nan Li
Aaron Naber
+ Quantitative Reifenberg theorem for measures 2016 Nick Edelen
Aaron Naber
Daniele Valtorta
+ Quantitative Reifenberg theorem for measures 2016 Nick Edelen
Aaron Naber
Daniele Valtorta
+ PDF Chat Packing dimension of mean porous measures 2009 D. Beliaev
Esa Järvenpää
Maarit Järvenpää
Antti Käenmäki
Tapio Rajala
Stanislav Smirnov
Ville Suomala
+ PDF Chat Dimension estimates for the boundary of planar Sobolev extension domains 2021 Danka Lučić
Tapio Rajala
Jyrki Takanen
+ PDF Chat Fractal Percolation, Porosity, and Dimension 2016 Changhao Chen
Tuomo Ojala
Eino Rossi
Ville Suomala
+ Fractal percolation, porosity, and dimension 2015 Changhao Chen
Tuomo Ojala
Eino Rossi
Ville Suomala
+ Upper bounds for Hausdorff dimension 1999 В. И. Берник
M. M. Dodson
+ PDF Chat The Dimension of Weakly Mean Porous Measures: a Probabilistic Approach 2011 Pablo Shmerkin
+ Weak porosity on metric measure spaces 2023 Carlos Mudarra