Theory of excitonic second-harmonic generation in monolayer<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">MoS</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>

Type: Article

Publication Date: 2014-06-10

Citations: 134

DOI: https://doi.org/10.1103/physrevb.89.235410

Abstract

Recent experimental results have demonstrated the ability of monolayer ${\mathrm{MoS}}_{2}$ to efficiently generate second harmonic fields with susceptibilities between 0.1 and 100 nm/V. However, few theoretical calculations exist with which to interpret these findings. In particular, it is of interest to theoretically estimate the modulus of the second harmonic response since experimental reports on this differ by almost three orders of magnitude. Here, we present calculations of the second harmonic response based on a tight-binding band structure and implementation of excitons in a Bethe-Salpeter framework. We compare directly with recent experimental findings demonstrating a good agreement with the excitonic theory regarding, e.g., peak position. Furthermore, we predict an off-resonance susceptibility on the order of 0.1 nm/V, while on-resonance values rise to 4 nm/V.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Physical Review B - View

Similar Works

Action Title Year Authors
+ PDF Chat Second harmonic generation in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>h</mml:mi></mml:math>-BN and MoS<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub></mml:math>monolayers: Role of electron-hole interaction 2014 Myrta GrĂŒning
Claudio Attaccalite
+ PDF Chat Observation of excitonic resonances in the second harmonic spectrum of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> 2015 Mads L. Trolle
Yao-Chung Tsao
Kjeld Pedersen
Thomas Garm Pedersen
+ PDF Chat Excitonic Stark effect in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>monolayers 2016 Benedikt Scharf
Tobias Frank
Martin Gmitra
Jaroslav Fabian
Igor Ćœutić
Vasili Perebeinos
+ PDF Chat Giant Enhancement of the Optical Second-Harmonic Emission of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>WSe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>Monolayers by Laser Excitation at Exciton Resonances 2015 Gang Wang
X. Marie
Iann C. Gerber
T. Amand
D. Lagarde
L. Bouet
M. A. Vidal
A. Balocchi
B. Urbaszek
+ Interlayer exciton mediated second harmonic generation in bilayer MoS2 2021 Shivangi Shree
Delphine Lagarde
Laurent Lombez
CĂ©dric Robert
A. Balocchi
Kenji Watanabe
Takashi Taniguchi
X. Marie
Iann C. Gerber
M. M. Glazov
+ PDF Chat Exciton band structure of monolayer<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> 2015 Fengcheng Wu
Fanyao Qu
A. H. MacDonald
+ PDF Chat Theoretical Methods for Excitonic Physics in 2D Materials 2022 M. F. C. Martins Quintela
J. C. G. Henriques
Luiz G. M. TenĂłrio
N. M. R. Peres
+ PDF Chat Nonlinear optical selection rules of excitons in monolayer transition metal dichalcogenides 2019 Alireza Taghizadeh
Thomas Garm Pedersen
+ PDF Chat Optical Spectrum of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>: Many-Body Effects and Diversity of Exciton States 2013 Diana Y. Qiu
Felipe H. da Jornada
Steven G. Louie
+ Excitonic effects in nonlinear optical responses: Exciton-state formalism and first-principles calculations 2023 Jiawei Ruan
Y. -H. Chan
Steven G. Louie
+ PDF Chat Excitons in nonlinear optical responses: shift current in MoS$_2$ and GeS monolayers 2024 Juan José Esteve-Paredes
M. A. GarcĂ­a-BlĂĄzquez
Alejandro José Uría-Álvarez
María Camarasa‐Gómez
J. J. Palacios
+ Analogy and dissimilarity of excitons in monolayer and bilayer of MoSe$_2$ 2022 Ɓucja Kipczak
A. O. Slobodeniuk
Tomasz WoĆșniak
M Bhatnagar
Natalia Zawadzka
Katarzyna Olkowska‐Pucko
Magdalena Grzeszczyk
Kenji Watanabe
Takashi Taniguchi
A. BabiƄski
+ PDF Chat Excitonic response of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>AA</mml:mi></mml:mrow><mml:mo>â€Č</mml:mo></mml:msup></mml:math> and AB stacked hBN bilayers 2022 J. C. G. Henriques
Bruno Amorim
R. M. Ribeiro
N. M. R. Peres
+ PDF Chat Large exciton binding energies in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MnPS</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> as a case study of a van der Waals layered magnet 2021 Magdalena Birowska
Paulo E. Faria
Jaroslav Fabian
Jens Kunstmann
+ PDF Chat Unified Treatment of Magnons and Excitons in Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>CrI</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> from Many-Body Perturbation Theory 2021 Thomas Olsen
+ PDF Chat Quenching of low-energy optical absorption in bilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msub><mml:mi mathvariant="normal">N</mml:mi></mml:math> polytypes 2023 Matteo Zanfrognini
Miki Bonacci
Fulvio Paleari
Elisa Molinari
Alice Ruini
Andrea Ferretti
MarĂ­lia Caldas
Daniele Varsano
+ PDF Chat Optical nonlinearities of excitons in monolayer MoS2 2018 Daniel Soh
Christopher Rogers
Dodd Gray
Eric Chatterjee
Hideo Mabuchi
+ PDF Chat Exciton-phonon coupling and band-gap renormalization in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> 2018 Himani Mishra
Anindya Bose
Amit Kumar Dhar
Sitangshu Bhattacharya
+ PDF Chat Excitons in nonlinear optical responses: shift current in MoS2 and GeS monolayers 2025 Juan José Esteve-Paredes
M. A. GarcĂ­a-BlĂĄzquez
Alejandro José Uría-Álvarez
María Camarasa‐Gómez
J. J. Palacios
+ PDF Chat Excitonic properties of semiconducting monolayer and bilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>MoT</mml:mi><mml:msub><mml:mi mathvariant="normal">e</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> 2016 CĂ©dric Robert
Raphaël Picard
D. Lagarde
Gang Wang
J. P. Echeverry
Fabian Cadiz
P. Renucci
Alexander Högele
T. Amand
X. Marie

Works That Cite This (47)

Action Title Year Authors
+ PDF Chat Role of interlayer coupling in second harmonic generation in bilayer transition metal dichalcogenides 2022 Xiao Jiang
Lei Kang
Bing Huang
+ PDF Chat Improved<i>ab initio</i>calculation of surface second-harmonic generation from Si(111)(<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1</mml:mn><mml:mo>×</mml:mo><mml:mn>1</mml:mn></mml:math>):H 2016 Sean M. Anderson
Nicolas Tancogne-Dejean
Bernardo S. Mendoza
Valérie Vëniard
+ PDF Chat Excitonic structure of the optical conductivity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> monolayers 2018 Emilia Ridolfi
Caio Lewenkopf
Vitor M. Pereira
+ PDF Chat Third-Order Optical Nonlinearity in Two-Dimensional Transition Metal Dichalcogenides 2018 Sina Khorasani
+ PDF Chat Second-harmonic generation in single-layer monochalcogenides: A response from first-principles real-time simulations 2019 Claudio Attaccalite
Maurizia Palummo
Elena Cannuccia
Myrta GrĂŒning
+ PDF Chat Gauge invariance of excitonic linear and nonlinear optical response 2018 Alireza Taghizadeh
Thomas Garm Pedersen
+ PDF Chat Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS <sub>2</sub> using multiphoton microscopy 2016 Robert I. Woodward
R. Murray
C. F. Phelan
Rafael E. P. de Oliveira
T. H. Runcorn
E. J. R. Kelleher
Sichao Li
Emerson Oliveira
Guilhermino J. M. Fechine
Goki Eda
+ PDF Chat Nonlinear Optical Properties of Transition-Metal Dichalcogenide MX<sub>2</sub> (M = Mo, W; X = S, Se) Monolayers and Trilayers from First-Principles Calculations 2015 C. Y. Wang
Guang‐Yu Guo
+ PDF Chat Strong bulk photovoltaic effect and second-harmonic generation in two-dimensional selenium and tellurium 2021 Meijuan Cheng
Zi-Zhong Zhu
Guang‐Yu Guo
+ PDF Chat Double resonant tunable second harmonic generation in two-dimensional layered materials through band nesting 2023 Sudipta Biswas
Jin Yu
Zhenwei Wang
D. R. da Costa
Chujun Zhao
Shengjun Yuan
Tony Low

Works Cited by This (19)

Action Title Year Authors
+ PDF Chat Effect of spin-orbit interaction on the optical spectra of single-layer, double-layer, and bulk MoS<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub></mml:math> 2013 Alejandro Molina‐Sánchez
Davide Sangalli
Kerstin Hummer
Andrea Marini
Ludger Wirtz
+ PDF Chat Spin-orbit coupling in an<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>f</mml:mi></mml:math>-electron tight-binding model: Electronic properties of Th, U, and Pu 2009 Matthew D. Jones
R. C. Albers
+ PDF Chat Exciton spectra in two-dimensional graphene derivatives 2013 Shouting Huang
Yufeng Liang
Li Yang
+ PDF Chat Second harmonic microscopy of monolayer MoS<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub></mml:math> 2013 Nardeep Kumar
Sina Najmaei
Qiannan Cui
Frank Ceballos
Pulickel M. Ajayan
Jun Lou
Hui Zhao
+ PDF Chat Analysis of the exciton-exciton interaction in semiconductor quantum wells 2008 Christoph Schindler
R. Zimmermann
+ PDF Chat A generic tight-binding model for monolayer, bilayer and bulk MoS2 2013 Ferdows Zahid
Lei Liu
Yu Zhu
Jian Wang
Hong Guo
+ PDF Chat Atomically Thin<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>: A New Direct-Gap Semiconductor 2010 Kin Fai Mak
Changgu Lee
James Hone
Jie Shan
Tony F. Heinz
+ PDF Chat Tight-binding model and direct-gap/indirect-gap transition in single-layer and multilayer MoS<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub></mml:math> 2013 E. Cappelluti
Rafael RoldĂĄn
Jose Ángel Silva-Guillén
Pablo OrdejĂłn
F. Guinea
+ PDF Chat Observation of intense second harmonic generation from MoS<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub></mml:math>atomic crystals 2013 Leandro M. Malard
Thonimar V. Alencar
Ana Paula M. Barboza
Kin Fai Mak
Ana Paula
+ PDF Chat Band structure of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">MoS</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">MoSe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo
 2001 Th. Böker
R. Severin
Anja MĂŒller
C. Janowitz
R. Manzke
D. Voß
Peter KrĂŒger
A. Mazur
J. Pollmann