Type: Article
Publication Date: 1996-01-01
Citations: 41
DOI: https://doi.org/10.4064/sm-118-2-169-174
We prove that for λ ∈ [0,1] and A, B two Borel sets in $ℝ^n$ with A convex, $Φ^{-1}(γ_n(λA + (1-λ)B)) ≥ λΦ^{-1}(γ_n(A)) + (1-λ)Φ^{-1}(γ_n(B))$, where $γ_n$ is the canonical gaussian measure in $ℝ^n$ and $Φ^{-1}$ is the inverse of the gaussian distribution
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | Probability in Banach Spaces | 1976 |
Michel Ledoux Michel Talagrand |