Type: Article
Publication Date: 1982-03-01
Citations: 1
DOI: https://doi.org/10.1090/s0002-9939-1982-0656118-0
Let ${f_a}(x) = a - {x^2}$, $x \in [ - \tfrac {1} {2} - \tfrac {1} {2}\sqrt {1 + 4a}$, $\tfrac {1} {2} + \tfrac {1} {2}\sqrt {1 + 4a} ]$ and $a \in [0,2]$. It is proved that if ${f_a}$ has a periodic orbit of odd period $n$ and if $b > a$, then ${f_b}$ has a periodic orbit of period $n$. This is equivalent to the corresponding result for the function family ${g_\lambda }(x) = \lambda x(1 - x)$, $x \in [0,1]$, $\lambda \in [0,4]$.
Action | Title | Year | Authors |
---|---|---|---|
+ | On iterated maps of the interval | 1988 |
John Milnor William P. Thurston |