A monotonicity theorem for the family $f\sb{a}(x)=a-x\sp{2}$

Type: Article

Publication Date: 1982-03-01

Citations: 1

DOI: https://doi.org/10.1090/s0002-9939-1982-0656118-0

Abstract

Let ${f_a}(x) = a - {x^2}$, $x \in [ - \tfrac {1} {2} - \tfrac {1} {2}\sqrt {1 + 4a}$, $\tfrac {1} {2} + \tfrac {1} {2}\sqrt {1 + 4a} ]$ and $a \in [0,2]$. It is proved that if ${f_a}$ has a periodic orbit of odd period $n$ and if $b > a$, then ${f_b}$ has a periodic orbit of period $n$. This is equivalent to the corresponding result for the function family ${g_\lambda }(x) = \lambda x(1 - x)$, $x \in [0,1]$, $\lambda \in [0,4]$.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ 3-PERIODIC ORBIT IMPLYING 683172687698650885-PERIODIC ORBITS——INFIMUMS OF NUMBERS OF PERIODIC ORBITS IN CONTINUOUS FUNCTIONS 1991 Mai J
+ Periodicity of a Class of Functional Equations 2017 小利 周
+ On the sum of a monotonic and a periodic function 1948 Fa Dick
+ On the sum of a monotonic and a periodic function 1948 de Ng Dick Bruijn
+ Monotonicity of the period function for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mo>″</mml:mo></mml:mrow></mml:msup><mml:mo>−</mml:mo><mml:mi>u</mml:mi><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:math>with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="… 2013 Kazuyuki Yagasaki
+ PDF Chat On Block’s condition for simple periodic orbits of functions on an interval 1984 Chung-Wu Ho
+ PDF Chat On the periodic points of a typical continuous function 1989 Károly Simon
+ Periodic Functions 2008 Keith B. Oldham
Jan C. Myland
Jerome Spanier
+ Periodic Functions 2018 C. Pozrikidis
+ Periodic functions 2016
+ Periodic Functions 2011 Ravi P. Agarwal
Kanishka Perera
Sandra Pinelas
+ Periodic Functions 1988 S. Dineen
+ Periodic functions 1975
+ Periodic functions 2022 James Sneyd
Rachel M. Fewster
Duncan J. McGillivray
+ Periodic Functions 1981 Hua Loo Keng
Yuan Wang
+ Decomposition of Spaces of Periodic Functions into Subspaces of Periodic Functions and Subspaces of Antiperiodic Functions 2022 Hailu Bikila Yadeta
+ Research on Periodicity of Function f(x) and |f(x)| 2010 Li Dong
+ On the stability of $$b^q(x+a)^{q+1}+x$$ from the perspective of periodic sequences 2024 T. Lin
Qiang Wang
+ Introduction to Periodic Functions 2015 Jay Abramson
+ $c$-Almost periodic type functions and applications 2020 Mohammed Taha Khalladi
Marko Kostić
Manuel Pinto
Abdelkader Rahmani
Daniel Velinov

Works That Cite This (1)

Action Title Year Authors
+ On iterated maps of the interval 1988 John Milnor
William P. Thurston