Cyclic partitions of complete uniform hypergraphs

Type: Article

Publication Date: 2010-09-01

Citations: 4

DOI: https://doi.org/10.37236/390

Abstract

By $K^{(k)}_n$ we denote the complete $k$-uniform hypergraph of order $n$, $1\le k \le n-1$, i.e. the hypergraph with the set $V_n=\{ 1,2,...,n\}$ of vertices and the set $V_n \choose k$ of edges. If there exists a permutation $\sigma$ of the set $V_n$ such that $\{ E,\sigma (E),..., \sigma^{q-1}(E) \}$ is a partition of the set $V_n \choose k$ then we call it cyclic $q$-partition of $K^{(k)}_n$ and $\sigma$ is said to be a $(q,k)$-complementing. In the paper, for arbitrary integers $k,q$ and $n$, we give a necessary and sufficient condition for a permutation to be $(q,k)$-complementing permutation of $K^{(k)}_n$. By $\tilde{K}_n$ we denote the hypergraph with the set of vertices $V_n$ and the set of edges $2^{V_n} - \{ \emptyset , V_n \}$. If there is a permutation $\sigma$ of $V_n$ and a set $E \subset 2^{V_n} - \{ \emptyset , V_n \}$ such that $\{ E, \sigma (E),..., \sigma^{p-1}(E) \}$ is a $p$-partition of $ 2^{V_n} - \{ \emptyset , V_n \}$ then we call it a cyclic $p$-partition of $K_n$ and we say that $\sigma$ is $p$-complementing. We prove that $\tilde{K}_n$ has a cyclic $p$-partition if and only if $p$ is prime and $n$ is a power of $p$ (and $n > p$). Moreover, any $p$-complementing permutation is cyclic.

Locations

  • The Electronic Journal of Combinatorics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Cyclic partitions of complete nonuniform hypergraphs and complete multipartite hypergraphs 2013 Shonda Gosselin
Andrzej Szymański
A. Paweł Wojda
+ On cyclic Hamiltonian decompositions of complete<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>k</mml:mi></mml:math>-uniform hypergraphs 2014 Paweł Petecki
+ Cyclically<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>t</mml:mi></mml:math>-complementary uniform hypergraphs 2010 Shonda Gosselin
+ PDF Chat Cyclic partitions of complete and almost complete uniform hypergraphs 2020 Dilbarjot
Shonda Dueck
+ PDF Chat Edge orbits and cyclic and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml1" display="inline" overflow="scroll" altimg="si1.gif"><mml:mi>r</mml:mi></mml:math>-pyramidal decompositions of complete uniform hypergraphs 2018 Ryan C. Bunge
Saad I. El‐Zanati
Joel Jeffries
Charles Vanden Eynden
+ On Almost-Regular Edge Colourings of Hypergraphs 2016 Darryn Bryant
+ PDF Chat Generating self-complementary uniform hypergraphs 2010 Shonda Gosselin
+ PDF Chat Decomposing Complete 3-Uniform Hypergraph Kn(3) into 7-cycles 2015 Hong Yan
Rimutu Ji
+ A Decomposition of Complete Bipartite 4-Uniform Hypergraph K74,7 into Loose Cycles 2018 Chunlei Xu
+ Cycles as edge intersection hypergraphs of $k$-uniform hypergraphs ($k \le 6$) -- a constructive approach 2022 Sophie Pätz
Martin Sonntag
+ PDF Chat Symmetric factorizations of the complete uniform hypergraph 2017 Hu Ye Chen
Zai Ping Lu
+ Panchromatic colorings of random hypergraphs 2019 Dmitry Alexandrovich Kravtsov
Nikolai Evgen'evich Krokhmal
D. A. Shabanov
+ PDF Chat Cycle Decompositions in 3-Uniform Hypergraphs 2023 Simón Piga
Nicolás Sanhueza‐Matamala
+ Decompositions of complete 3-uniform hypergraphs into cycles of constant prime length 2020 R. Lakshmi
T. Poovaragavan
+ PDF Chat Vertex-Transitive $q$-Complementary Uniform Hypergraphs 2011 Shonda Gosselin
+ PDF Chat On tight 6-cycle decompositions of complete 3-uniform hypergraphs 2021 Matthew Akin
Ryan C. Bunge
Saad I. El‐Zanati
Joshua W. Hamilton
Brittany Kolle
Sabrina Lehmann
Levi Neiburger
+ Hypergraph Turán numbers of vertex disjoint cycles 2013 Ran Gu
Xueliang Li
Yongtang Shi
+ PDF Chat Prime 3-Uniform Hypergraphs 2021 Abderrahim Boussaïri
Brahim Chergui
Pierre Ille
Mohamed Zaidi
+ Encoding acyclic orientation of complete multipartite graphs 2023 Walter Carballosa
Jessica Khera
Francisco Vega Reyes
+ PDF Chat K-CYCLIC EVEN CYCLE SYSTEMS OF THE COMPLETE GRAPH 2008 Shung-Liang Wu
Dung-Ming Lee