An averaged form of Chowla’s conjecture

Type: Article

Publication Date: 2015-11-04

Citations: 74

DOI: https://doi.org/10.2140/ant.2015.9.2167

Abstract

Let λ denote the Liouville function.A well-known conjecture of Chowla asserts that, for any distinct natural numbers h 1 , . . ., h k , one hasas X → ∞.This conjecture remains unproven for any h 1 , . . ., h k with k ≥ 2. Using the recent results of Matomäki and Radziwiłł on mean values of multiplicative functions in short intervals, combined with an argument of Kátai and Bourgain, Sarnak, and Ziegler, we establish an averaged version of this conjecture, namelyas X → ∞, whenever H = H (X ) ≤ X goes to infinity as X → ∞ and k is fixed.Related to this, we give the exponential sum estimate X 0 x≤n≤x+H λ(n)e(αn) d x = o(HX )as X → ∞ uniformly for all α ∈ ‫,ޒ‬ with H as before.Our arguments in fact give quantitative bounds on the decay rate (roughly on the order of log log H/ log H ) and extend to more general bounded multiplicative functions than the Liouville function, yielding an averaged form of a (corrected) conjecture of Elliott.

Locations

  • Algebra & Number Theory - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Project Euclid (Cornell University) - View - PDF
  • UTUPub (University of Turku) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Algebra & Number Theory - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Project Euclid (Cornell University) - View - PDF
  • UTUPub (University of Turku) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ The logarithmically averaged Chowla and Elliott conjectures for two-point correlations 2015 Terence Tao
+ Higher uniformity of bounded multiplicative functions in short intervals on average 2020 Kaisa Matomäki
Maksym Radziwiłł
Terence Tao
Joni Teräväinen
Tamar Ziegler
+ PDF THE LOGARITHMICALLY AVERAGED CHOWLA AND ELLIOTT CONJECTURES FOR TWO-POINT CORRELATIONS 2016 Terence Tao
+ PDF Chat Higher uniformity of bounded multiplicative functions in short intervals on average 2023 Kaisa Matomäki
Maksym Radziwiłł
Terence Tao
Joni Teräväinen
Tamar Ziegler
+ PDF Multiplicative functions in short intervals 2016 Kaisa Matomäki
Maksym Radziwiłł
+ Equivalence of the logarithmically averaged Chowla and Sarnak conjectures 2016 Terence Tao
+ Multiplicative functions in short intervals 2015 Kaisa Matomäki
Maksym Radziwiłł
+ Multiplicative functions in short intervals 2015 Kaisa Matomäki
Maksym Radziwiłł
+ An averaged Chowla and Elliott conjecture along independent polynomials 2016 Nikos Frantzikinakis
+ PDF Chat An Averaged Chowla and Elliott Conjecture Along Independent Polynomials 2017 Nikos Frantzikinakis
+ An averaged Chowla and Elliott conjecture along independent polynomials 2016 Nikos Frantzikinakis
+ PDF Tame behaviour of the mean value of multiplicative functions and some inequalities relating values of Dirichlet series 2007 Olivier Ramaré
+ On the Liouville function in short intervals 2020 Jake Chinis
+ PDF Chat Asymptotics for multilinear averages of multiplicative functions 2016 Nikos Frantzikinakis
Bernard Host
+ Additive functions in short intervals, gaps and a conjecture of Erd\H{o}s 2021 Alexander P. Mangerel
+ On a Bohr set analogue of Chowla's conjecture 2023 Joni Teräväinen
Aled Walker
+ PDF Odd order cases of the logarithmically averaged Chowla conjecture 2018 Terence Tao
Joni Teräväinen
+ PDF Chat On the Hardy-Littlewood-Chowla conjecture on average 2021 Jared Duker Lichtman
Joni Teräväinen
+ Additive functions in short intervals, gaps and a conjecture of Erdős 2021 Alexander P. Mangerel
+ PDF Divisor-bounded multiplicative functions in short intervals 2023 Alexander P. Mangerel