Conditions for Trigonometrically Fitted Runge-Kutta Methods

Type: Article

Publication Date: 2009-01-01

Citations: 0

DOI: https://doi.org/10.1063/1.3241411

Locations

  • AIP conference proceedings - View

Similar Works

Action Title Year Authors
+ Trigonometrically fitted Runge?Kutta methods for the numerical solution of the Schr�dinger equation 2005 Zacharias Anastassi
T. E. Simos
+ Trigonometrically Fitted Runge-Kutta Methods of Order Five for the Numerical Solution of the Schrödinger Equation 2019 Zacharias Anastassi
T. E. Simos
+ EXPONENTIALLY-FITTED RUNGE–KUTTA THIRD ALGEBRAIC ORDER METHODS FOR THE NUMERICAL SOLUTION OF THE SCHRÖDINGER EQUATION AND RELATED PROBLEMS 1999 T. E. Simos
P.S. Williams
+ A Trigonometrically Fitted Runge-Kutta Pair of Orders Four and Five for the Numerical Solution of the Schrödinger Equation 2019 Zacharias Anastassi
T. E. Simos
+ Trigonometrically fitted fifth-order runge-kutta methods for the numerical solution of the schrödinger equation 2005 Zacharias Anastassi
T. E. Simos
+ EXPONENTIALLY FITTED RUNGE–KUTTA FOURTH ALGEBRAIC ORDER METHODS FOR THE NUMERICAL SOLUTION OF THE SCHRÖDINGER EQUATION AND RELATED PROBLEMS 2000 P.S. Williams
T. E. Simos
+ A family of fifth algebraic order trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation 2005 T. E. Simos
+ Trigonometrical fitting conditions for two derivative Runge-Kutta methods 2017 Th. Monovasilis
Z. Kalogiratou
T. E. Simos
+ Trigonometrically fitted two step hybrid methods for the numerical solution of the Schrödinger equation 2015 Z. Kalogiratou
Th. Monovasilis
Higinio Ramos
T. E. Simos
+ PDF Chat A New Trigonometrically Fitted Two-Derivative Runge-Kutta Method for the Numerical Solution of the Schrödinger Equation and Related Problems 2013 Yanwei Zhang
Haitao Che
Yonglei Fang
Xiong You
+ Trigonometrically fitted two derivative Runge Kutta methods for the Schrödinger equation 2018 Z. Kalogiratou
Th. Monovasilis
T. E. Simos
+ Trigonometrical fitting conditions for two derivative Runge Kutta methods 2016 Th. Monovasilis
Z. Kalogiratou
Theodore E. Simos
+ A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical solution of the Schrodinger equation 2001 T. E. Simos
+ PDF Chat Trigonometrically Fitted Runge-Kutta Methods for the Numerical Solution of the Oscillatory Problems 2021 Zainab Khaled Ghazal
Kasim Abbas Hussain
+ A new approach on the construction of trigonometrically fitted two step hybrid methods 2015 Th. Monovasilis
Z. Kalogiratou
Higinio Ramos
T. E. Simos
+ Trigonometrically fitted multi-step Runge-Kutta methods for solving oscillatory initial value problems 2017 Jiyong Li
+ A Family of Exponentially-fitted Runge–Kutta Methods with Exponential Order Up to Three for the Numerical Solution of the Schrödinger Equation 2006 Zacharias Anastassi
T. E. Simos
+ A Trigonometrically Fitted Symplectic Runge-Kutta-Nyström Method 2011 Th. Monovasilis
Z. Kalogiratou
Theodore E. Simos
Theodore E. Simos
George Psihoyios
Ch. Tsitouras
Zacharias Anastassi
+ PDF Chat Trigonometric Polynomial or Exponential Fitting Approach? 2008 Greet Vanden Berghe
Maarten Van Daele
+ On the Construction of Exponentially-Fitted Methods for the Numerical Solution of the Schrödinger Equation 2001 Avrilia Konguetsof
Theodore E. Simos

Works That Cite This (0)

Action Title Year Authors