A quadratic partition of primes ≑1 (π‘šπ‘œπ‘‘7)

Type: Article

Publication Date: 1974-01-01

Citations: 8

DOI: https://doi.org/10.1090/s0025-5718-1974-0345902-2

Abstract

The solutions of a quadratic partition of primes <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p identical-to 1 left-parenthesis mod 7 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≑<!-- ≑ --></mml:mo> <mml:mn>1</mml:mn> <mml:mspace width="0.667em" /> <mml:mo stretchy="false">(</mml:mo> <mml:mi>mod</mml:mi> <mml:mspace width="0.333em" /> <mml:mn>7</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">p \equiv 1 \pmod 7</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in terms of which the author and P. A. Leonard have given the cyclotomic numbers of order seven and also necessary and sufficient conditions for 2, 3, 5 and 7 to be seventh powers <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis mod p right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mspace width="0.667em" /> <mml:mo stretchy="false">(</mml:mo> <mml:mi>mod</mml:mi> <mml:mspace width="0.333em" /> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\pmod p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, are obtained for all such primes <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="greater-than 1000"> <mml:semantics> <mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mn>1000</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">&gt; 1000</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ A Quadratic Partition of Primes ≑1 (mod 7) 1974 Kenneth S. Williams
+ PDF Chat Elementary treatment of a quadratic partition of primes $p \equiv 1 (\mathrm{mod} 7)$ 1974 Kenneth S. Williams
+ PDF Chat The number of solutions of a certain quadratic congruence related to the class number of 𝑄(βˆšπ‘) 1993 Mao Hua Le
+ PDF Chat Number of Primes of Given Linear Forms 1912 Allan Cunningham
+ PDF Chat The representation of primes by quadratic and cubic polynomials 1966 P. A. B. Pleasants
+ PDF Chat Primes represented by quadratic polynomials in two variables 1974 Henryk Iwaniec
+ PDF Chat Effective determination of the decomposition of the rational primes in a cubic field 1983 Pascual Llorente
Enric Nart
+ PDF Chat Primes of the form 𝑛⁴+1 1967 Mohan Lal
+ Primes of the Form π‘₯Β²+𝑛𝑦² 2022 D. R. Cox
+ Primes of the form xΒ² + DyΒ² 2014 Cho-ho Lam
+ (The) relation between the quadratic representation of a prime and binomial coefficients = μ†Œμˆ˜μ˜ μ΄μ°¨ν‘œν˜„κ³Ό μ΄ν•­κ³„μˆ˜μ™€μ˜ 관계 2000 Dong‐Hoon Lee
μ΄λ™ν›ˆ
+ PDF Chat On the representation of primes by cubic polynomials in two variables 2004 D. R. Heath‐Brown
B. Z. Moroz
+ The Diophantine equation 2π‘₯Β²+1=3ⁿ 2003 Ming-Guang Leu
Guan-Wei Li
+ Quadratic extensions of the integers, β„€[βˆšπ••] 2018
+ PDF Chat Counting certain quadratic partitions of zero modulo a prime number 2021 Wang Xiao
Aihua Li
+ Small prime solutions of quadratic equations II 2004 Kwok-Kwong Stephen Choi
Jianya Liu
+ PDF Chat The representation of primes by cubic polynomials 1966 P. A. B. Pleasants
+ Prime representing quadratics 1999 N. J. Tejaswi
+ 2610. Quadratic polynomials and prime numbers 1956 J.P. McCarthy
+ PDF Chat The class number of 𝑄(√-𝑝), for 𝑃≑1(π‘šπ‘œπ‘‘8) a prime 1972 Ezra Brown