Three Color Ramsey Numbers for Graphs with at most 4 Vertices

Type: Article

Publication Date: 2012-12-31

Citations: 3

DOI: https://doi.org/10.37236/2160

Abstract

For given graphs $H_{1}, H_{2}, H_{3}$, the 3-color Ramsey number $R(H_{1},$ $H_{2}, H_{3})$ is the smallest integer $n$ such that if we arbitrarily color the edges of the complete graph of order $n$ with $3$ colors, then it always contains a monochromatic copy of $H_{i}$ colored with $i$, for some $1 \leq i \leq 3$.We study the bounds on 3-color Ramsey numbers $R(H_1,H_2,H_3)$, where $H_i$ is an isolate-free graph different from $K_2$ with at most four vertices, establishing that $R(P_4,C_4,K_4)=14$, $R(C_4,K_3,K_4-e)=17$, $R(C_4,K_3+e,K_4-e)=17$, $R(C_4,K_4-e,K_4-e)=19$, $28\le R(C_4,K_4-e,K_4)\le36$, $R(K_3,K_4-e,K_4)\le41$, $R(K_4-e,K_4-e,K_4)\le59$ and $R(K_4-e,K_4,K_4)\le113$. Also, we prove that $R(K_3+e,K_4-e,K_4-e)=R(K_3,K_4-e,K_4-e)$, $R(C_4,K_3+e,K_4)\le\max\{R(C_4,K_3,K_4),29\}\le32$, $R(K_3+e,K_4-e,K_4)\le\max\{R(K_3,K_4-e,K_4),33\}\le41$ and $R(K_3+e,K_4,K_4)\le\max\{R(K_3,K_4,K_4),2R(K_3,K_3,K_4)+2\}\le79$.This paper is an extension of the article by Arste, Klamroth, Mengersen [Utilitas Mathematica, 1996].

Locations

  • The Electronic Journal of Combinatorics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On Some Multicolor Ramsey Numbers Involving $K_3+e$ and $K_4-e$ 2012 Daniel S. Shetler
Michael A. Wurtz
Stanisław Radziszowski
+ On Some Multicolor Ramsey Numbers Involving $K_3+e$ and $K_4-e$ 2012 Daniel S. Shetler
Michael A. Wurtz
Stanisław Radziszowski
+ On Some Multicolor Ramsey Numbers Involving $K_3+e$ and $K_4-e$ 2012 Daniel S. Shetler
Michael A. Wurtz
Stanisław Radziszowski
+ On Some Three-Color Ramsey Numbers for Paths 2012 Janusz Dybizbański
Tomasz Dzido
Stanisław Radziszowski
+ On some three-color Ramsey numbers for paths 2015 Janusz Dybizbański
Tomasz Dzido
Stanisław Radziszowski
+ Restricted size Ramsey number for $P_3$ versus cycles 2017 Joanna Cyman
Tomasz Dzido
+ On Ramsey number R(4, 3, 3) and triangle-free edge-chromatic graphs in three colors 1997 Konrad Piwakowski
+ Three-Color Ramsey Numbers of K n Dropping an Edge 2011 Changxiang He
Yusheng Li
Lin Dong
+ On three color Ramsey numbers <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" id="d1e206" altimg="si22.gif"><mml:mi>R</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mn>… 2018 Xuemei Zhang
Yaojun Chen
T.C.E. Cheng
+ On Some Exact Values of Three-Color Ramsey Numbers for Paths 2012 Janusz Dybizbański
Tomasz Dzido
+ PDF Chat New Lower Bound for Multicolor Ramsey Numbers for Even Cycles 2005 Tomasz Dzido
Andrzej Nowik
Piotr Szuca
+ PDF Chat New Computational Upper Bounds for Ramsey Numbers $R(3,k)$ 2013 Jan Goedgebeur
Stanisław Radziszowski
+ Lower Bounds of Three Ramsey Numbers for C_4 vs. a Complete Graph 2003 Xue Xiu
+ PDF Chat The anti-Ramsey number of $C_{3}$ and $C_{4}$ in the complete $r$-partite graphs 2020 Chunqiu Fang
Ervin Győri
Binlong Li
Jimeng Xiao
+ The anti-Ramsey number of $C_{3}$ and $C_{4}$ in the complete $r$-partite graphs 2020 Chunqiu Fang
Ervin Győri
Binlong Li
Jimeng Xiao
+ On three-color Ramsey number of paths 2012 Leila Maherani
Gholamreza Omidi
Ghaffar Raeisi
Maryam Shahsiah
+ On three-color Ramsey number of paths 2012 Leila Maherani
Gholamreza Omidi
Ghaffar Raeisi
Maryam Shahsiah
+ Star-critical Ramsey numbers for cycles versus the complete graph on 5 vertices 2019 Chula J. Jayawardene
+ PDF Chat Star-critical Ramsey numbers for cycles versus the complete graph on 5 vertices 2019 Chula J. Jayawardene
+ Star-critical Ramsey numbers for cycles versus the complete graph on 5 vertices 2019 Chula J. Jayawardene