Widths of Subgroups

Type: Article

Publication Date: 1998-01-01

Citations: 101

DOI: https://doi.org/10.1090/s0002-9947-98-01792-9

Abstract

We say that the width of an infinite subgroup <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding="application/x-tex">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if there exists a collection of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> essentially distinct conjugates of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding="application/x-tex">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the intersection of any two elements of the collection is infinite and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is maximal possible. We define the width of a finite subgroup to be <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="0"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding="application/x-tex">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We prove that a quasiconvex subgroup of a negatively curved group has finite width. It follows that geometrically finite surfaces in closed hyperbolic <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="3"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding="application/x-tex">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-manifolds satisfy the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-plane property for some <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On theta pairs for a maximal subgroup 1990 N. P. Mukherjee
Prabir Bhattacharya
+ PDF Chat The subgroups of a free product of two groups with an amalgamated subgroup 1970 A. Karrass
D. Solitar
+ PDF Chat Groups of finite weight 1981 A. H. Rhemtulla
+ PDF Chat On groups of finite weight 1976 Phil Kutzko
+ PDF Chat Normal subgroups contained in the Frattini subgroup. II 1975 W. Mack Hill
+ Sylow subgroups, exponents, and character values 2019 Gabriel Navarro
Pham Huu Tiep
+ PDF Chat Quotient groups of finite groups 1984 Pamela A. Ferguson
+ PDF Chat On the intersection of a class of maximal subgroups of a finite group 1989 Xiu Yun Guo
+ PDF Chat On the join of subnormal subgroups 1974 A. J. Van Werkhooven
+ PDF Chat Closed hulls in infinite symmetric groups 1973 Franklin Haimo
+ PDF Chat Totally Zippin 𝑝-groups 1984 Charles Megibben
+ PDF Chat Subnormal subgroups in 𝑈(𝑍𝐺) 1988 Jairo Z. Gonçalves
Jürgen Ritter
Sudarshan K. Sehgal
+ Blocks of central 𝑝-group extensions 2004 Shigeo Koshitani
Naoko Kunugi
+ PDF Chat The Hughes conjecture and groups with absolutely regular subgroups or 𝐸𝐶𝐹-subgroups 1975 Joseph A. Gallian
+ PDF Chat Above and below subgroups of a lattice-ordered group 1986 Richard N. Ball
Paul Conrad
Michael R. Darnel
+ PDF Chat An 𝑛-dimensional subgroup of 𝑅ⁿ⁺¹ 1985 James Keesling
+ PDF Chat On Sylow intersections in finite groups 1984 Geoffrey R. Robinson
+ PDF Chat The equivalence of high subgroups 1983 Paul Hill
+ PDF Chat 𝑆-groups revisited 1981 Roger Hunter
Elbert A. Walker
+ Intense Automorphisms of Finite Groups 2021 Mima Stanojkovski