The McKay-Thompson series associated with the irreducible characters of the Monster

Type: Other

Publication Date: 1996-01-01

Citations: 2

DOI: https://doi.org/10.1090/conm/193/02367

Abstract

∞= V be the graded monster module of the monster simple group M and let χ k be an irreducible representation of M. The generating function of c hk (the multiplicity of χ k in V ) is determined.Furthermore, the invariance group of the modular function associated with the generating function is also determined in this paper.h 0 2 3 4 5 6 7 8 9 10 11Let us consider, for each irreducible character χ k , the generating function

Locations

  • Contemporary mathematics - American Mathematical Society - View
  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ The McKay-Thompson series associated with the irreducible characters of the Monster 1994 Koichiro Harada
Mong Lung Lang
+ Modular forms associated with the Monster module 1994 Koichiro Harada
Mong Lung Lang
+ Modular forms associated with the Monster module 1994 Koichiro Harada
Mong Lung Lang
+ PDF Chat Modular forms associated with the Monster module 1998 Koichiro Harada
Mong Lung Lang
+ PDF Chat Verification of the conjugacy classes and ordinary character table of the Monster 2024 Thomas Breuer
Kay Magaard
Robert A. Wilson
+ A short introduction to Monstrous Moonshine 2022 Valdo Tatitscheff
+ Coefficients of McKay-Thompson series and distributions of the moonshine module 2015 Hannah Larson
+ Coefficients of McKay-Thompson series and distributions of the moonshine module 2015 Hannah Larson
+ MODULAR FORMS ASSOCIATED WITH THE MONSTER MODULE(Moonshine and Verdex Operator Algebra) 1995 Koichiro Harada
Mong Lung Lang
+ A natural representation of the Fischer-Griess Monster with the modular function <i>J</i> as character 1984 Igor Frenkel
James Lepowsky
Arne Meurman
+ Kloosterman sums for the modular group 1999 Roelof W. Bruggeman
+ Two New Avatars of Moonshine for the Thompson Group 2022 John F. R. Duncan
Jeffrey A. Harvey
Brandon C. Rayhaun
+ The McKay-Thompson Series of Some Elements of Order 3,5,and 7 in the Monster 2003 Shinya Sakuma
+ The metaplectic kernel for the group 𝑆𝐿(1,𝐷) 1992 Andrei S. Rapinchuk
+ The Monster Group and Majorana Involutions 2009 А. А. Иванов
+ PDF Chat Kloosterman Sums and Maass Cusp Forms of Half Integral Weight for the Modular Group 2016 Scott Ahlgren
Nickolas Andersen
+ PDF Chat The Fourier coefficients of the McKay–Thompson series and the traces of CM values 2017 Toshiki Matsusaka
+ The Terwilliger algebra of the Johnson scheme <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml1" display="inline" overflow="scroll" altimg="si1.gif"><mml:mi>J</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>N</mml:mi><mml:mo>,</mml:mo><mml:mi>D</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math> revisited from the viewpoint of group representations 2018 Ying-Ying Tan
Yi-Zheng Fan
Tatsuro Ito
Xiaoye Liang
+ WHAT ARE CHEVALLEY GROUPS FOR SL(2,F)-MODULE V(m) F V(n)? 1992 Yang Kohn Kim
Seo Yeon Won
+ The Fourier coefficients of the McKay-Thompson series and the traces of CM values 2017 Toshiki Matsusaka