Type: Article
Publication Date: 1983-01-01
Citations: 8
DOI: https://doi.org/10.1090/s0002-9947-1983-0709571-3
It is shown that every subspace <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> contains a subspace isomorphic to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="l Superscript p left-parenthesis upper E right-parenthesis"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>l</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>p</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{l^{p(E)}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p left-parenthesis upper E right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">p(E)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the upper bound of the set of real <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>’s such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is of type <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Rademacher. As <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p left-parenthesis upper E right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">p(E)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is also the upper bound of the set of real <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>’s such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> embeds into <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript p"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, this result answers a question of H. P. Rosenthal. The proof uses the theory of stable Banach spaces developed by J. L. Krivine and B. Maurey.