Espaces 𝑙^{𝑝} dans les sous-espaces de 𝐿¹

Type: Article

Publication Date: 1983-01-01

Citations: 8

DOI: https://doi.org/10.1090/s0002-9947-1983-0709571-3

Abstract

It is shown that every subspace <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> contains a subspace isomorphic to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="l Superscript p left-parenthesis upper E right-parenthesis"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>l</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>p</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{l^{p(E)}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p left-parenthesis upper E right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">p(E)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the upper bound of the set of real <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>’s such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is of type <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Rademacher. As <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p left-parenthesis upper E right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">p(E)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is also the upper bound of the set of real <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>’s such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> embeds into <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript p"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, this result answers a question of H. P. Rosenthal. The proof uses the theory of stable Banach spaces developed by J. L. Krivine and B. Maurey.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Subspace of 𝐿𝐶(𝐻) and 𝐶_{𝑝} 1975 Yaakov Friedman
+ 𝑆-invariant subspaces of 𝐿^{𝑝}(𝐓) 2004 David A. Redett
+ PDF Chat Sous-espaces bien disposés de 𝐿¹-applications 1984 Gilles Godefroy
+ PDF Chat Définissabilité avec paramètres extérieurs dans 𝑄_{𝑝} et 𝑅 1989 Françoise Delon
+ PDF Chat A rigid subspace of 𝐿₀ 1981 N. J. Kalton
James W. Roberts
+ PDF Chat Embedding 𝐿¹ in 𝐿¹/𝐻¹ 1983 Jean Bourgain
+ “Beurling type” subspaces of 𝐿^{𝑝}(𝐓²) and 𝐇^{𝐩}(𝐓²) 2004 David A. Redett
+ PDF Chat Certain invariant subspace structure of 𝐿²(𝕋²) 1998 Kichi-Suke Saito
Guoxing Ji
Tomoyoshi Ohwada
+ PDF Chat Recognizing certain factors of 𝐸⁴ 1970 Leonard R. Rubin
+ PDF Chat 𝐶*-extreme points 1981 Alan Hopenwasser
Robert L. Moore
Vern I. Paulsen
+ PDF Chat Embedding 𝑙_{𝑝}^{𝑛^{𝛼}} in 𝑙ⁿ_{𝑝,𝑞} 1983 N. L. Carothers
P. H. Flinn
+ PDF Chat Completeness of {𝑠𝑖𝑛𝑛𝑥+𝐾𝑖 𝑐𝑜𝑠𝑛𝑥} 1971 Jonathan I. Ginsberg
+ PDF Chat Embedding subspaces of 𝐿₁ into 𝑙^{𝑁}₁ 1990 Michel Talagrand
+ PDF Chat Complete intersections in 𝐶ⁿ and 𝑅²ⁿ 1980 Marie A. Vitulli
+ PDF Chat On 𝜇-spaces and 𝑘_{𝑅}-spaces 1977 José L. Blasco
+ PDF Chat 𝑅^{𝑐} is not almost Lindelöf 1970 J. H. B. Kemperman
Dorothy Maharam
+ PDF Chat Souslin subsets of 𝑃(𝜔)-spaces 1989 Li Sheng Wu
+ PDF Chat The separable representations of 𝑈(𝐻) 1988 Doug Pickrell
+ PDF Chat Extensions relative to a 𝐼𝐼_{∞}-factor 1979 Sung Je Cho
+ PDF Chat Some characterizations of 𝐶(ℳ) 1996 Christopher J. Bishop