An improved lower bound related to the Furstenberg-Sárközy theorem

Type: Article

Publication Date: 2015-02-16

Citations: 5

DOI: https://doi.org/10.37236/4656

Abstract

Let $D(n)$ denote the cardinality of the largest subset of the set $\{1,2,\ldots,n\}$ such that the difference of no pair of distinct elements is a square. A well-known theorem of Furstenberg and Sárközy states that $D(n)=o(n)$. In the other direction, Ruzsa has proven that $D(n) \gtrsim n^{\gamma}$ for $\gamma = \frac{1}{2}\left( 1 + \frac{\log 7}{\log 65} \right) \approx 0.733077$. We improve this to $\gamma = \frac{1}{2}\left( 1 + \frac{\log 12}{\log 205} \right) \approx 0.733412$.

Locations

  • The Electronic Journal of Combinatorics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Improved bounds for the Furstenberg-S\'ark\"ozy theorem 2024 Ben Green
Mehtaab Sawhney
+ PDF Chat A maximal extension of the best-known bounds for the Furstenberg–Sárközy theorem 2018 Alex Rice
+ A Maximal Extension of the Best-Known Bounds for the Furstenberg-S\'ark\"ozy Theorem 2016 Alex Rice
+ A new upper bound for sets with no square differences 2020 Thomas F. Bloom
James E. Maynard
+ On a theorem of Sárközy for difference sets and shifted primes 2019 Ruoyi Wang
+ PDF Chat Improved upper bounds on Diophantine tuples with the property $D(n)$ 2024 Chi Hoi Yip
+ PDF Chat Improved Bounds on Sárközy’s Theorem for Quadratic Polynomials 2012 Mariah Hamel
Neil Lyall
Alex Rice
+ PDF Chat A lower bound of Ruzsa’s number related to the Erdős–Turán conjecture 2017 Csaba Sándor
Quan-Hui Yang
+ A quantitative bound on Furstenberg-Sárközy patterns with shifted prime power common differences in primes 2021 Mengdi Wang
+ Improved Bounds on Sarkozy's Theorem for Quadratic Polynomials 2011 Mariah Hamel
Neil Lyall
Alex Rice
+ Improved Bounds on Sarkozy's Theorem for Quadratic Polynomials 2011 Mariah Hamel
Neil Lyall
Alex Rice
+ PDF Chat A new upper bound for sets with no square differences 2022 Thomas F. Bloom
James Maynard
+ Square-Difference-Free Sets of Size Omega(n^{0.7334...}) 2008 Richard Beigel
William Gasarch
+ A lower bound of Ruzsa's number related to the Erdős-Turán conjecture 2016 Csaba Sándor
Quan-Hui Yang
+ A quantitative bound on Furstenberg–Sárközy patterns with shifted prime power common differences in primes 2024 M. Wang
+ A maximal extension of the Bloom-Maynard bound for sets without square differences 2024 Nuno Arala
+ PDF Chat The Furstenberg-S\'ark\"ozy theorem for polynomials in one or more prime variables 2024 John R. Doyle
Alex Rice
+ A maximal extension of the Bloom-Maynard bound for sets with no square differences 2023 Nuno Arala
+ New bounds for Szemerédi's theorem, III: A polylogarithmic bound for $r_4(N)$ 2017 Ben Green
Terence Tao
+ A lower bound of Ruzsa's number related to the Erd\H{o}s-Tur\'an conjecture 2016 Csaba Sándor
Quan-Hui Yang