Strong coupling $N = 2$ gauge theory with arbitrary gauge group

Type: Article

Publication Date: 1998-01-01

Citations: 20

DOI: https://doi.org/10.4310/atmp.1998.v2.n2.a5

Abstract

A explicit definition of the cycles, on the auxiliary Riemann surface defined by Martinec and Warner for describing pure N = 2 gauge theories with arbitrary group, is provided.The strong coupling monodromies around the vanishing cycles are shown to arise from a set of dyons which becomes massless at the singularities.It is shown how the correct weak coupling monodromies are reproduced and how the dyons have charges which are consistent with the spectrum that can be calculated at weak coupling using conventional semi-classical methods.In particular, the magnetic charges are co-root vectors as required by the Dirac-Schwinger-Zwanziger quantization condition.

Locations

  • Advances in Theoretical and Mathematical Physics - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Strong Coupling N=2 Gauge Theory with Arbitrary Gauge Group 1997 Timothy J. Hollowood
+ PDF Chat (0, 2) Heterotic gauge couplings and their M-theory origin 1999 Stephan Stieberger
+ The GL q (2) gauge theory 1993 R. J. Finkelstein
+ Double Yangians of classical types and their vertex representations 2018 Naihuan Jing
Ming Liu
Fan Yang
+ PDF Chat The rĂ´le of Coulomb branches in 2D gauge theory 2021 Constantin Teleman
+ PDF Chat Multiplicative Hitchin systems and supersymmetric gauge theory 2019 Chris Elliott
Vasily Pestun
+ PDF Chat N = 2 rigid supersymmetry with gauged central charge 1999 Norbert Dragon
E.N. Ivanov
Sergei M. Kuzenko
E. Sokatchev
Ulrich Theis
+ Gauged WZW models and the coset construction 1990 Howard J. Schnitzer
+ PDF Chat M-theory geometric engineering for rank-0 3d $\mathcal{N}=2$ theories 2024 Andrea Sangiovanni
Roberto Valandro
+ PDF Chat Yangian doubles of classical types and their vertex representations 2020 Naihuan Jing
Fan Yang
Ming Liu
+ PDF Chat Gauge fixing and Gribov copies in pure Yang-Mills on a circle 1993 J. E. Hetrick
+ Gauge Theories 2016 Kasia Rejzner
+ Representations of the strong coupling group 1967 Wolfgang Kummer
+ Representations of the strong coupling group 1967
+ Review: Yuri I. Manin, Gauge field theory and complex geometry 1989 Claude LeBrun
+ PDF Chat Gravity dual of two-dimensional $$ \mathcal{N} $$ = (2, 2)∗ supersymmetric Yang-Mills theory and integrable models 2018 Jun Nian
+ PDF Chat Heterotic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">N</mml:mi><mml:mo>=</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>C</mml:mi><mml:mi>P</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false… 2010 Pavel A. Bolokhov
Mikhail Shifman
A. Yung
+ The role of Coulomb branches in 2D gauge theory 2018 Constantin Teleman
+ Introduction to a provisional mathematical definition of Coulomb branches of $3$-dimensional $\mathcal N=4$ gauge theories 2017 Hiraku Nakajima
+ PDF Chat Book Review: Gauge field theory and complex geometry 1989 Claude LeBrun

Works Cited by This (1)

Action Title Year Authors
+ Semi-classical decay of monopoles in N=2 gauge theory 1996 Timothy J. Hollowood