On the Extension of Stringlike Localised Sectors in 2+1 Dimensions

Type: Article

Publication Date: 2011-02-01

Citations: 2

DOI: https://doi.org/10.1007/s00220-011-1200-6

Abstract

In the framework of algebraic quantum field theory, we study the category $${\Delta_{{\rm BF}}^{\mathfrak{A}}}$$ of stringlike localised representations of a net of observables $${\mathcal{O} \mapsto \mathfrak{A}(\mathcal{O})}$$ in three dimensions. It is shown that compactly localised (DHR) representations give rise to a non-trivial centre of $${\Delta_{{\rm BF}}^{\mathfrak{A}}}$$ with respect to the braiding. This implies that $${\Delta_{{\rm BF}}^{\mathfrak{A}}}$$ cannot be modular when non-trivial DHR sectors exist. Modular tensor categories, however, are important for topological quantum computing. For this reason, we discuss a method to remove this obstruction to modularity. Indeed, the obstruction can be removed by passing from the observable net $${\mathfrak{A}(\mathcal{O})}$$ to the Doplicher-Roberts field net $${\mathfrak{F}(\mathcal{O})}$$ . It is then shown that sectors of $${\mathfrak{A}}$$ can be extended to sectors of the field net that commute with the action of the corresponding symmetry group. Moreover, all such sectors are extensions of sectors of $${\mathfrak{A}}$$ . Finally, the category $${\Delta_{{\rm BF}}^{\mathfrak{F}}}$$ of sectors of $${\mathfrak{F}}$$ is studied by investigating the relation with the categorical crossed product of $${\Delta_{{\rm BF}}^{\mathfrak{A}}}$$ by the subcategory of DHR representations. Under appropriate conditions, this completely determines the category $${\Delta_{{\rm BF}}^{\mathfrak{F}}}$$ .

Locations

  • Communications in Mathematical Physics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Radboud Repository (Radboud University) - View - PDF
  • Data Archiving and Networked Services (DANS) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ A Short Guide to Anyons and Modular Functors 2016 Simon Burton
+ State-sum construction of two-dimensional functorial field theories 2018 LĂłrĂĄnt Szegedy
+ PDF Chat Braided Categories of Endomorphisms as Invariants for Local Quantum Field Theories 2017 Luca Giorgetti
Karl-Henning Rehren
+ Extended TQFTs valued in the Landau-Ginzburg bicategory 2018 Montiel Montoya
Flavio Carlos
+ PDF Chat Fermionic symmetry fractionalization in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math> dimensions 2022 Daniel Bulmash
Maissam Barkeshli
+ Higher Categorical and Operadic Concepts for Orbifold Constructions - A Study at the Interface of Topology and Representation Theory 2020 Lukas Woike
+ Auto-equivalences of the modular tensor categories of type $A$, $B$, $C$ and $G$ 2020 Cain Edie-Michell
+ Auto-equivalences of the modular tensor categories of type $A$, $B$, $C$ and $G$ 2020 Cain Edie-Michell
+ Operads, homotopy theory and higher categories in algebraic quantum field theory 2023 Marco Benini
Alexander Schenkel
+ Classification of modular data up to rank 11 2023 Siu‐Hung Ng
Eric C. Rowell
Xiao-Gang Wen
+ PDF Chat Skein Construction of Balanced Tensor Products 2025 Manuel Mora y Araujo
Jin-Cheng Guu
Skyler Hudson
+ PDF Chat Modular $\mathbb{Z}_2$-Crossed Tambara-Yamagami-like Categories for Even Groups 2024 CĂ©sar GalĂ­ndo
Simon Lentner
Sven Möller
+ Bimodules in tensor categories with applications to quantum symmetry 2022 Amrei Oswald
+ On double quantum affinization: 1. Type $\mathfrak a_1$ 2019 Elie Mounzer
Robin Zegers
+ Three dimensional topological quantum field theory from $U_q(\mathfrak{gl}(1 \vert 1))$ and $U(1 \vert 1)$ Chern--Simons theory 2022 Nathan Geer
Matthew B. Young
+ PDF Chat Computing $G$-Crossed Extensions and Orbifolds of Vertex Operator Algebras 2024 CĂ©sar GalĂ­ndo
Simon Lentner
Sven Möller
+ PDF Chat Operads for algebraic quantum field theory 2020 Marco Benini
Alexander Schenkel
Lukas Woike
+ PDF Chat ON ALGEBRAIC STRUCTURES IMPLICIT IN TOPOLOGICAL QUANTUM FIELD THEORIES 1999 Louis Crane
David N. Yetter
+ Topological operators, noninvertible symmetries and decomposition 2021 Eric Sharpe
+ From categories to anyons: a travelogue 2018 Kerstin Beer
Alexander Hahn
Maria Kalabakov
Deniz E. Stiegemann
Stefan Seckmeyer
N. Knust
Tobias J. Osborne
Laura Niermann
Dmytro Bondarenko
Christin Schridde