A weak $L^2$ estimate for a maximal dyadic sum operator on $\mathbb{R}^n$

Type: Article

Publication Date: 2003-07-01

Citations: 7

DOI: https://doi.org/10.1215/ijm/1258138194

Abstract

Lacey and Thiele recently obtained a new proof of Carleson's theorem on almost everywhere convergence of Fourier series. This paper is a generalization of their techniques (known broadly as time-frequency analysis) to higher dimensions. In particular, a weak-type (2,2) estimate is derived for a maximal dyadic sum operator on $\mathbb R^{n}$, $n \gt 1$. As an application one obtains a new proof of Sjölin's theorem on weak $L^{2}$ estimates for the maximal conjugated Calderón-Zygmund operator on $\mathbb R^{n}$.

Locations

  • Illinois Journal of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ A weak L^2 estimate for a maximal dyadic sum operator on R^n 2002 Malabika Pramanik
Erin Terwilleger
+ Weak type inequality for the maximal operator of the (C, α) means of two-dimensionalWalsh-Fourier series 2010 Ушанги Гогинава
+ A Hardy–Littlewood Maximal Operator for the Generalized Fourier Transform on $${\mathbb {R}}$$R 2019 Salem Ben Saïd
Luc Deleaval
+ An alternative approach to sharp $L^1$ estimates for the dyadic maximal operator 2021 Eleftherios N. Nikolidakis
Andreas G. Tolias
+ Weighted vector-valued estimates for a non-standard Calderón-Zygmund operator 2016 Guoen Hu
+ Sharp $L^1$ estimates for the dyadic maximal operator 2021 Eleftherios N. Nikolidakis
Andreas G. Tolias
+ A weak estimate of Calder�n-Zygmund operators 1994 Dashan Fan
+ WEAKTYPE $L^1(R^n)$-ESTIMATE FOR CRETAIN MAXIMAL OPERATORS 1997 Yong‐Cheol Kim
+ Boundedness of Operators over $$(\mathcal{X},\nu )$$ 2013 Dachun Yang
Dongyong Yang
Guoen Hu
+ A Cotlar Type Maximal Function Associated With Fourier Multipliers 2019 Rajula Srivastava
+ A Cotlar Type Maximal Function Associated With Fourier Multipliers 2019 Rajula Srivastava
+ Weighted vector-valued estimates for a non-standard Calderón–Zygmund operator 2017 Guoen Hu
+ Weighted Estimates for Maximal Multilinear Calderón-Zygmund Operators 2009 Yuan Xinfeng
+ Weighted vector-valued estimates for a non-standard Calder\'on-Zygmund operator 2016 Guoen Hu
+ On the dimensional weak-type $(1,1)$ bound for Riesz transforms 2020 Daniel Spector
Cody B. Stockdale
+ Two Weight Inequalities for Maximal Truncations of Dyadic Calderón-Zygmund Operators 2009 Michael T. Lacey
Eric T. Sawyer
Ignacio Uriate-Tuero
+ On the dimensional weak-type $(1,1)$ bound for Riesz transforms 2020 Daniel Spector
Cody B. Stockdale
+ PDF Chat Sharp Weak Type Inequalities for the Dyadic Maximal Operator 2012 Eleftherios N. Nikolidakis
+ On an estimate of Calderón-Zygmund operators by dyadic positive operators 2012 Andrei K. Lerner
+ Maximal Multilinear Commutators on Non-homogeneous Metric Measure Spaces 2017 Jie Chen
Haibo Lin