Estimator selection: End-performance metric aspects

Type: Article

Publication Date: 2015-07-01

Citations: 0

DOI: https://doi.org/10.1109/acc.2015.7172026

View Chat PDF

Abstract

Recently, a framework for application-oriented optimal experiment design has been introduced. In this context, the distance of the estimated system from the true one is measured in terms of a particular end-performance metric. This treatment leads to superior unknown system estimates to classical experiment designs based on usual pointwise functional distances of the estimated system from the true one. The separation of the system estimator from the experiment design is done within this new framework by choosing and fixing the estimation method to either a maximum likelihood (ML) approach or a Bayesian estimator such as the minimum mean square error (MMSE). Since the MMSE estimator delivers a system estimate with lower mean square error (MSE) than the ML estimator for finite-length experiments, it is usually considered the best choice in practice in signal processing and control applications. Within the application-oriented framework a related meaningful question is: Are there endperformance metrics for which the ML estimator outperforms the MMSE when the experiment is finite-length? In this paper, we affirmatively answer this question based on a simple linear Gaussian regression example.

Locations

  • arXiv (Cornell University) - View - PDF
  • 2022 American Control Conference (ACC) - View

Similar Works

Action Title Year Authors
+ Estimator Selection: End-Performance Metric Aspects 2015 Dimitrios Katselis
Cristian R. Rojas
Carolyn L. Beck
+ Estimator Selection: End-Performance Metric Aspects 2015 Dimitrios Katselis
Cristian R. Rojas
Carolyn L. Beck
+ Robust Estimation in Signal Processing: A Tutorial-Style Treatment of Fundamental Concepts 2012 Abdelhak M. Zoubir
Visa Koivunen
Yacine Chakhchoukh
Michael Muma
+ PDF Chat A Pessimistic Approximation for the Fisher Information Measure 2016 Manuel Stein
Josef A. Nossek
+ Mean-Square Error Estimation 1973 SH Rosenber
Paul S. Levy
+ Estimation Theory 2014 R. Doraiswami
Chris Diduch
M. Stevenson
+ Robust estimator design with an emphasis balance between performance and robustness 2007 Hyeon‐Cheol Lee
D.R. Halverson
+ Estimation sous contraintes de communication : algorithmes et performances asymptotiques 2013 Rodrigo Cabral Farias
+ Minimax-statistical approach to increasing reliability of measurement information processing 2010 E. Yu. Ignashchenko
A. R. Pankov
K. V. Semenikhin
+ Estimation Theory 2018 Alain Bensoussan
+ Estimation 1983
+ Critère d'entropie pour l'estimation semi-paramétrique 2006 Éric Wolsztynski
+ Estimation Theory and Applications 1969 N. Nahi
+ Mesures de dépendance pour la séparation aveugle de sources : application aux mélanges post non linéaires 2003 Sophie Achard
+ Model Selection for Signal Processing: a Minimum Error Approach and a General Performance Analysis. 2020 Aleksandr Kharin
+ Estimation Theory. 1967 E. M. Scheuer
Ralph Deutsch
+ Estimation Theory. 1976 R. R. Harris
D.G. Lainiotis
+ Model Selection for Signal Processing: a Minimum Error Approach and a General Performance Analysis 2020 Aleksandr Kharin
+ Control estadístico multivariante de proceso aplicado en la industria 2018 Omar Juventino Argumedo
Rey David Molina Arredondo
Erwin Adán Martínez Gómez
Jesús Andrés Hernández Gómez
+ Lower Bounds on Exponential Moments of the Quadratic Error in Parameter Estimation 2017 Neri Merhav

Cited by (0)

Action Title Year Authors