Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case

Type: Article

Publication Date: 1999-01-01

Citations: 359

DOI: https://doi.org/10.1090/s0894-0347-99-00283-0

Abstract

We establish global wellposedness and scattering for the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Superscript 1"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding="application/x-tex">H^{1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>- critical defocusing NLS in 3D <disp-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="i u Subscript t Baseline plus normal upper Delta u minus u StartAbsoluteValue u EndAbsoluteValue Superscript 4 Baseline equals 0"> <mml:semantics> <mml:mrow> <mml:mi>i</mml:mi> <mml:msub> <mml:mi>u</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>t</mml:mi> </mml:mrow> </mml:msub> <mml:mo>+</mml:mo> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>u</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>4</mml:mn> </mml:mrow> </mml:msup> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\begin{equation*}iu_{t}+\Delta u - u|u|^{4}=0 \end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> assuming radial data <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi element-of upper H Superscript s"> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>s</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">\phi \in H^{s}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s greater-than-or-equal-to 1"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">s\geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In particular, it proves global existence of classical solutions in the radial case. The same result is obtained in 4D for the equation <disp-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="i u Subscript t Baseline plus normal upper Delta u minus u StartAbsoluteValue u EndAbsoluteValue squared equals 0 period"> <mml:semantics> <mml:mrow> <mml:mi>i</mml:mi> <mml:msub> <mml:mi>u</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>t</mml:mi> </mml:mrow> </mml:msub> <mml:mo>+</mml:mo> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>u</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo>=</mml:mo> <mml:mn>0.</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\begin{equation*}iu_{t}+\Delta u -u|u|^{2} =0. \end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula>

Locations

  • Journal of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Global well-posedness for the defocusing 3D quadratic NLS in the sharp critical space 2024 Jia Shen
Yifei Wu
+ Defocusing <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mo>˙</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:mrow></mml:msup></mml:math>-critical inhomogeneous nonlinear Schrödinger equations 2022 Ying Wang
Chengbin Xu
+ Global wellposedness of NLS in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo linebreak="goodbreak" linebreakstyle="after">+</mml:mo><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msup><mml:mo stretchy… 2022 Friedrich Klaus
Peer Christian Kunstmann
+ PDF Chat Global well-posedness and scattering of the defocusing energy-critical inhomogeneous nonlinear Schrödinger equation with radial data 2024 Dongjin Park
+ Local and global well-posedness for the critical Schrödinger-Debye system 2013 Adán J. Corcho
Filipe Oliveira
Jorge Drumond Silva
+ Global well-posedness and scattering for the defocusing $$\dot H^s$$ -critical NLS 2013 Jian Xie
Daoyuan Fang
+ Probabilistic well-posedness of the mass-critical NLS with radial data below <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math> 2019 Gyeongha Hwang
+ Global well-posedness and scattering for the defocusing Hartree equation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="double-struck">R</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:math> 2010 Yongsheng Li
Yifei Wu
+ Corrigendum to “Global well-posedness and scattering of the defocusing energy-critical inhomogeneous nonlinear Schrödinger equation with radial data” [J. Math. Anal. Appl. 536 (2) (2024) 128202] 2024 Dongjin Park
+ Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equations of fourth order in dimensions <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>d</mml:mi><mml:mo>⩾</mml:mo><mml:mn>9</mml:mn></mml:math> 2011 Changxing Miao
Guixiang Xu
Lifeng Zhao
+ Global well-posedness and scattering for the mass-critical nonlinear Schrödinger equation for radial data in high dimensions 2006 Terence Tao
Monica Vişan
Xiaoyi Zhang
+ Correction to “Global Well-Posedness and Polynomial Bounds for the Defocusing<i>L</i><sup>2</sup>-Critical Nonlinear Schrödinger Equation in ℝ” 2010 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ Global Well-Posedness and Scattering for the Defocusing H^s-Critical NLS 2013 Jian JIAN
Xie
Daoyuan
Fang
+ Global Well-posedness for the Defocusing, Quintic Nonlinear Schrödinger Equation in One Dimension for Low Regularity Data 2011 Benjamin Dodson
+ Large global solutions for energy-critical nonlinear Schrödinger equation 2021 Ruobing Bai
Jia Shen
Yifei Wu
+ Global wellposedness of NLS in $H^1(\mathbb{R}) + H^s(\mathbb{T})$ 2021 Friedrich Klaus
Peer Christian Kunstmann
+ PDF Chat Global well-posedness in Sobolev space implies global existence for weighted $L^2$ initial data for $L^2$-critical NLS 2006 Pieter Blue
J. Colliander
+ PDF Chat Large time behavior and global existence of solution to the bipolar defocusing nonlinear Schrödinger-Poisson system 2004 Chengchun Hao
Ling Hsiao
+ PDF Chat Global well-posedness and scattering for the defocusing quintic NLS in three dimensions 2012 Rowan Killip
Monica Vişan
+ Global well-posedness and scattering for the defocusing quintic NLS in three dimensions 2011 Rowan Killip
Monica Vişan