A Tight Lower Bound for Convexly Independent Subsets of the Minkowski Sums of Planar Point Sets

Type: Article

Publication Date: 2010-10-29

Citations: 12

DOI: https://doi.org/10.37236/484

Abstract

Recently, Eisenbrand, Pach, Rothvoß, and Sopher studied the function $M(m, n)$, which is the largest cardinality of a convexly independent subset of the Minkowski sum of some planar point sets $P$ and $Q$ with $|P| = m$ and $|Q| = n$. They proved that $M(m,n)=O(m^{2/3}n^{2/3}+m+n)$, and asked whether a superlinear lower bound exists for $M(n,n)$. In this note, we show that their upper bound is the best possible apart from constant factors.

Locations

  • The Electronic Journal of Combinatorics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Convexly Independent Subsets of the Minkowski Sum of Planar Point Sets 2008 Friedrich Eisenbrand
János Pach
Thomas Rothvoß
Nir B. Sopher
+ Large convexly independent subsets of Minkowski sums 2010 Konrad J. Swanepoel
Pável Valtr
+ Large convexly independent subsets of Minkowski sums 2010 Konrad J. Swanepoel
Pável Valtr
+ PDF Chat Large convexly independent subsets of Minkowski sums 2010 Konrad J. Swanepoel
Pável Valtr
+ PDF Chat Convexly independent subsets of Minkowski sums of convex polygons 2021 Mateusz Skomra
Stéphan Thomassé
+ Minkowski Sum of Convex Polyhedra 2009 Efi Fogel
+ Tight lower bounds on the number of faces of the Minkowski sum of convex polytopes via the Cayley trick 2011 Menelaos I. Karavelas
Eleni Tzanaki
+ On the largest convex subsets in Minkowski sums 2014 Hans Raj Tiwary
+ The maximum number of faces of the Minkowski sum of three convex polytopes 2015 Menelaos I. Karavelas
Christos Konaxis
Eleni Tzanaki
+ PDF Chat A Geometric Approach for the Upper Bound Theorem for Minkowski Sums of Convex Polytopes 2016 Menelaos I. Karavelas
Eleni Tzanaki
+ PDF Chat On the Exact Maximum Complexity of Minkowski Sums of Polytopes 2009 Efi Fogel
Dan Halperin
Christophe Weibel
+ The maximum number of faces of the Minkowski sum of three convex polytopes 2012 Menelaos I. Karavelas
Christos Konaxis
Eleni Tzanaki
+ Inequalities between mixed volumes of convex bodies: volume bounds for the Minkowski sum 2020 Gennadiy Averkov
Christopher Borger
Ivan Soprunov
+ Inequalities between mixed volumes of convex bodies: volume bounds for the Minkowski sum 2020 Gennadiy Averkov
Christopher Borger
Ivan Soprunov
+ Volume of the Minkowski sums of star-shaped sets 2019 Matthieu Fradelizi
Zsolt Lángi
Artem Zvavitch
+ Bounds on Convex Bodies in Pairwise Intersecting Minkowski Arrangement of Order $\mu$ 2018 Viktória Földvári
+ PDF Chat The Maximum Number of Faces of the Minkowski Sum of Two Convex Polytopes 2015 Menelaos I. Karavelas
Eleni Tzanaki
+ PDF Chat INEQUALITIES BETWEEN MIXED VOLUMES OF CONVEX BODIES: VOLUME BOUNDS FOR THE MINKOWSKI SUM 2020 Gennadiy Averkov
Christopher Borger
Ivan Soprunov
+ PDF Chat The maximum number of faces of the minkowski sum of three convex polytopes 2013 Menelaos I. Karavelas
Christos Konaxis
Eleni Tzanaki
+ PDF Chat The maximum number of faces of the minkowski sum of three convex polytopes 2013 Menelaos I. Karavelas
Christos Konaxis
Eleni Tzanaki